

LabVIEW®

Demonstration Guide
March 1996 Edition
Part Number 321215A-01
© Copyright 1996 National Instruments Corporation. All Rights Reserved.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com

E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

(512) 418-1111 or (800) 329-7177

Tel: (512) 795-8248
Fax: (512) 794-5678 or (800) 328-2203

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 48301892, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

FaxBack Support

Telephone Support (U.S.)

International Offices

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or
in part, without the prior written consent of National Instruments Corporation.

Trademarks
LabVIEW®and NI-488M™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

©

 National Instruments Corporation v LabVIEW Demons

About
This
Manual
The LabVIEW Demonstration Guide contains the information you need
to get started with the Laboratory Virtual Instrument Engineering
Workbench (LabVIEW) software package. LabVIEW simplifies
scientific computation, process control, and test and measurement
applications, and you can also use it for a wide variety of other
programming applications.

This demonstration guide gives you a brief introduction to LabVIEW,
touching on its basic fundamental concepts.

Organization of This Manual

This manual is organized as follows:

• The Preface, Getting Started with the LabVIEW Demonstration, tells
you how to get started with the LabVIEW Demonstration Package
and explains the different demonstrations you can view in the
package.

• Chapter 1, Introduction to LabVIEW, describes what LabVIEW is,
what a Virtual Instrument (VI) is, how to use the LabVIEW
environment (windows, menus, palettes, and tools), how to
operate VIs, how to edit VIs, and how to create VIs.

• Chapter 2, Creating a SubVI, describes what a subVI is, teaches you
how to create the icon and connector, and teaches you how to use a
VI as a subVI.

• Chapter 3, Loops and Charts, introduces While Loops, teaches you
how to display data in a chart, teaches you about shift registers and
how to use them, and teaches you how to use For Loops.

• Chapter 4, Arrays, Clusters, and Graphs, discusses how to create
arrays, use basic array functions, clusters, and graphs. You also learn
what polymorphism is, and how to use graphs to display data.

• Chapter 5, Case and Sequence Structures and the Formula Node,
describes how to use the Case structure and Sequence structure,
sequence locals and Formula Nodes.
tration Guide

About This Manual

• Chapter 6, Strings and File I/O, teaches you how to create string
controls and indicators and teaches you how to use string functions,
file input and output operations, save data to files in spreadsheets, and
write data to and read data from text files.

• Chapter 7, Data Acquisition (for Windows, Macintosh, and Sun) and
Instrument Control, discusses how to acquire data from a plug-in data
acquisition board, teaches you about VISA, teaches you about GPIB,
shows you how to control a serial port interface from LabVIEW,
discusses VXI (for Windows, Macintosh, and Sun), teaches you about
instrument drivers and how to use them, and teaches you about using
a Frequency Response Test VI.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes menus, menu items, or dialog box buttons or options. In
addition, bold text denotes VI input and output parameters.

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Monospace font denotes text or characters that you enter using the
keyboard. Sections of code, programming examples, syntax examples,
and messages and responses that the computer automatically prints to the
screen also appear in this font.

italic Italic text in this font denotes that you must supply the appropriate words
monospace or values in the place of these items.

<> Angle brackets enclose the name of a key on the keyboard—for example,
<Shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys–for
example, <Shift-Delete> .

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence

File»Page Setup»Options»Substitute Fonts
LabVIEW Demonstration Guide vi © National Instruments Corporation

About This Manual
directs you to pull down the File menu, select the Page Setup item, select
Options, and finally select the Substitute Fonts option from the last
dialog box.

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, and files, as in drivename\dir1name\
dir2name\myfile.

IEEE 488.1 and IEEE 488.1 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-1987
IEEE 488.2 and the ANSI/IEEE Standard 488.2-1987, respectively, which define

 the GPIB.

Note: This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

Customer Education
National Instruments offers hands-on LabVIEW Basics and Advanced
courses to help you quickly master LabVIEW and develop successful
applications. The comprehensive Basics course not only teaches you
LabVIEW fundamentals, but also gives you hands-on experience
developing data acquisition and instrument control applications. The
follow-up Advanced course teaches you how to maximize the
performance and efficiency of LabVIEW applications. Contact
National Instruments for a detailed course catalog and for course fees
and dates.
© National Instruments Corporation vii LabVIEW Demonstration Guide

Getting Started with the
LabVIEW Demonstration
© National Instruments Corporation ix LabVIEW Demons
Preface
This preface tells you how to get started with the LabVIEW
Demonstration Package and explains the different demonstrations you
can view in the package.

Open your LabVIEW Demonstration Package application by clicking
on the LabVIEW icon in your LabVIEW Demonstration folder. When
you open the LabVIEW Demonstration Package, the LabVIEW Demo
VI appears on your screen automatically.

This Demonstration VI provides a quick glimpse into the many ways
that LabVIEW can be used to solve your software needs. Clicking on a
category button takes you to a specific demonstration of a program
running in LabVIEW. The program puts a check mark beside every
category that you’ve accessed, so you can keep track of what you have
viewed already.
tration Guide

Preface Getting Started with the LabVIEW Demonstration
Clicking on the category will bring up an example application written
entirely in LabVIEW. You can look into each of these demonstration
applications and see how they work. For more information about the
demonstration you are viewing, click on the blue, More Info... button
at the bottom of the application, or press the <F5> key. To return to the
main demonstration menu, click on the red, Return button, which is
also at the bottom of each application, or press the <F4> key.

The following list describes each category in the Demonstration VI.

Look at a LabVIEW Test and Measurement application.
Demonstrates the LabVIEW Test Executive, which is an application
developed in LabVIEW that you can use to control testing for
production and manufacturing test applications.

Look at a LabVIEW Factory Automation application.
Simulates a process monitoring and control application created in
LabVIEW.
LabVIEW Demonstration Guide x © National Instruments Corporation

Preface Getting Started with the LabVIEW Demonstration
See how easy graphical programming is with LabVIEW.
Introduces you to graphical programming, and shows you the basics
behind building Virtual Instruments (VIs) in LabVIEW.

Investigate the LabVIEW Analysis Libraries.
Demonstrates LabVIEW’s analysis libraries and shows you how you
can use these libraries to create analysis systems.

Investigate resources to help build LabVIEW applications.
Shows you to the many developmental resources available with your
LabVIEW package, including toolkits, information sources, courses
available, and technical support options with LabVIEW.

Explore instrument control using LabVIEW.
Tells you how you can use LabVIEW’s flexible interface for instrument
control applications.

Examine a LabVIEW low-speed data acquisition application.
Shows how you can use LabVIEW with data acquisition devices to
monitor, collect, and analyze data.

Discover LabVIEW for real-time data acquisition applications.
Demonstrates why LabVIEW works great with high-speed data
acquisition applications by offering you maximum power and
flexibility with your DAQ devices.

Learn more about National Instruments.
Gives you a brief introduction to National Instruments, and tells you
how you can locate the National Instruments office nearest to you.

Explore LabVIEW for your own applications.
Want to know more? This option tells you how you can take a more
advanced look at LabVIEW, using the LabVIEW Demonstration Guide.

Now you are ready to take a look at all of the capabilities of the
LabVIEW package. For a more in-depth look at programming in
LabVIEW, refer to Chapter 2, Introduction to LabVIEW, in this guide.

If you would like to explore some other completed demonstrations of
LabVIEW, open the demos.llb library and choose a demonstration
VI. Then, click on the run button to see the VI executing.
© National Instruments Corporation xi LabVIEW Demonstration Guide

Introduction to LabVIEW
© National Instruments Corporation 1-1 LabVIEW Demons
Chapter

1

This chapter describes what LabVIEW is, what a Virtual
Instrument (VI) is, how to use the LabVIEW environment (windows,
menus, palettes, and tools), how to operate VIs, how to edit VIs, and
how to create VIs.

Before you start performing any of the objectives in this chapter, you
should click on the Explore LabVIEW for your own applications option
in the LabVIEW Demo VI.

Because LabVIEW is such a feature-rich program development
system, this demonstration guide cannot practically show you how to
solve every possible programming problem. Instead, this
demonstration guide explains the theory behind LabVIEW, contains
exercises to teach you to use the LabVIEW programming tools, and
briefly guides you through practical uses of LabVIEW features as
applied to actual programming tasks.

If you would like more training after using this manual, National
Instruments offers hands-on LabVIEW courses to help you quickly
master LabVIEW and develop successful applications.

The comprehensive LabVIEW Basics course not only teaches you
LabVIEW fundamentals, but also gives you hands-on experience
developing data acquisition (for Windows, Macintosh, and Sun) and
instrument control applications. The follow-up LabVIEW Advanced
course teaches you how to maximize the performance and efficiency of
LabVIEW applications in addition to teaching you the advanced
features of LabVIEW.

For a detailed course catalog and for course fees and dates, refer to the
address page on the inside front cover of this manual for information
about contacting National Instruments.
tration Guide

Chapter 1 Introduction to LabVIEW
Chapter Information
Each chapter begins with a section like the one that follows, listing the
learning objectives for that chapter.

You Will Learn:
• What LabVIEW is.

• What a Virtual Instrument (VI) is.

• How to use the LabVIEW environment (windows and palettes).

• How to operate VIs.

• How to edit VIs.

• How to create VIs.

What Is LabVIEW?
LabVIEW is a program development application, much like various
commercial C or BASIC development systems, or National
Instruments LabWindows. However, LabVIEW is different from those
applications in one important respect. Other programming systems use
text-based languages to create lines of code, while LabVIEW uses a
graphical programming language, G, to create programs in block
diagram form.

You can use LabVIEW with little programming experience. LabVIEW
uses terminology, icons, and ideas familiar to scientists and engineers
and relies on graphical symbols rather than textual language to describe
programming actions.

LabVIEW has extensive libraries of functions and subroutines for most
programming tasks. For Windows, Macintosh, and Sun, LabVIEW
contains application specific libraries for data acquisition and VXI
instrument control. LabVIEW also contains application-specific
libraries for GPIB and serial instrument control, data analysis, data
presentation, and data storage. LabVIEW includes conventional
program development tools, so you can set breakpoints, animate
program execution to see how data passes through the program, and
single-step through the program to make debugging and program
development easier.
LabVIEW Demonstration Guide 1-2 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
How Does LabVIEW Work?
LabVIEW includes libraries of functions and development tools
designed specifically for instrument control. For Windows, Macintosh,
and Sun, LabVIEW also contains libraries of functions and
development tools for data acquisition. LabVIEW programs are called
virtual instruments (VIs) because their appearance and operation
imitate actual instruments. However, they are analogous to functions
from conventional language programs. VIs have both an interactive
user interface and a source code equivalent, and accept parameters
from higher-level VIs. The following are descriptions of these three VI
features.

• VIs contain an interactive user interface, which is called the front
panel, because it simulates the panel of a physical instrument. The
front panel can contain knobs, push buttons, graphs, and other
controls and indicators. You input data using a keyboard and
mouse, and then view the results on the computer screen.

• VIs receive instructions from a block diagram, which you
construct in G. The block diagram supplies a pictorial solution to
a programming problem. The block diagram contains the source
code for the VI.

• VIs use a hierarchical and modular structure. You can use them as
top-level programs, or as subprograms within other programs or
subprograms. A VI within another VI is called a subVI. The icon
and connector pane of a VI work like a graphical parameter list so
that other VIs can pass data to it as a subVI.

With these features, LabVIEW promotes and adheres to the concept of
modular programming. You divide an application into a series of tasks,
which you can divide again until a complicated application becomes a
series of simple subtasks. You build a VI to accomplish each subtask
and then combine those VIs on another block diagram to accomplish
the larger task. Finally, your top-level VI contains a collection of
subVIs that represent application functions.

Because you can execute each subVI by itself, apart from the rest of the
application, debugging is much easier. Furthermore, many low-level
subVIs often perform tasks common to several applications, so that you
can develop a specialized set of subVIs suited to applications you can
construct.
© National Instruments Corporation 1-3 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
Tools Palette
LabVIEW uses a floating Tools palette, which you can use to edit and
debug VIs. You use the <Tab> key to tab through the commonly used
tools on the palette. If you have closed the Tools palette, select
Windows»Show Tools Palette to display the palette.The following
Illustration displays the Tools palette.

Operating tool Places Controls and Functions palette
items on the front panel and block
diagram

Positioning tool Positions, resizes, and selects objects

Labeling tool Edits text and creates free labels

Wiring tool Wires objects together in the block
diagram

Object pop-up menu tool Brings up on a pop-up menu for an
object

Scroll tool Scrolls through the window without
using the scrollbars

Breakpoint tool Sets breakpoints on VIs, functions,
loops, sequences, and cases

Probe tool Creates probes on wires
LabVIEW Demonstration Guide 1-4 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
Color copy tool Copies colors for pasting with the
Color tool

Color tool Sets foreground and background
colors

Controls Palette
The Controls palette consists of a graphical, floating palette that
automatically opens when you launch LabVIEW. You use this palette
to place controls and indicators on the front panel of a VI. Each
top-level icon contains subpalettes. If the Controls palette is not
visible, you can open the palette by selecting Windows»Show Controls
Palette from the front panel menu. You can also pop up on an open area
in the front panel to access a temporary copy of the Controls palette.
The following illustration displays the top-level of the Controls
palette.
© National Instruments Corporation 1-5 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
Controls and Indicators

Numeric Controls and Indicators
You use numeric controls to enter numeric quantities, while numeric
indicators display numeric quantities. The two most commonly used
numeric objects are the digital control and the digital indicator.

Boolean Controls and Indicators
You use Boolean controls and indicators for entering and displaying
Boolean (True/False) values. Boolean objects simulate switches,
buttons, and LEDs. The most commonly used Boolean objects are the
vertical switch and the round LED.

Configuring Controls and Indicators
You can configure nearly all the controls and indicators using options
from their pop-up menus. Popping up on individual components of
controls and indicators displays menus for customizing those
components. An easy way to access the pop-up menu is to click the
Object pop-up menu tool, shown at left, on any object that has a

Label

Increment Buttons Digital Control

Digital Indicator

Label
LabVIEW Demonstration Guide 1-6 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
pop-up menu. The following picture illustrates this display method for
a digital control.

Functions Palette
The Functions palette consists of a graphical, floating palette that
automatically opens when you switch to the block diagram. You use
this palette to place nodes (constants, indicators, VIs, and so on) on the
block diagram of a VI. Each top-level icon contains subpalettes. If the
Functions palette is not visible, you can select Windows»Show
Functions Palette from the block diagram menu to display it. You can
also pop up on an open area in the block diagram to access a temporary

Pop up on the label for
its pop-up menu Pop up on the digital display

for its pop-up menu
© National Instruments Corporation 1-7 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
copy of the Functions palette. The following illustration displays the
top-level of the Functions palette.

Building a VI
OBJECTIVE To build a VI that simulates acquisition of a temperature reading.

Make sure you have clicked on the Explore LabVIEW for your own
applications option in the LabVIEW Demo VI before you start this
exercise.

You will use the Demo Voltage Read VI to measure the voltage, and
then multiply the reading by 100.0 to convert the voltage into a
temperature (in degrees F).

Imagine that you have a transducer or sensor that converts temperature
to voltage.

(Windows, Macintosh, and Sun) The sensor connects to an
analog-to-digital converter (A/D) board, as shown in the following
illustration, which converts voltage to digital data.
LabVIEW Demonstration Guide 1-8 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
(HP-UX) The sensor could also be connected to an analog-to-digital
converter that is connected to the computer through GPIB, as shown in
the following illustration. This also converts voltage to digital data.

PC

A/D Board

Sensor

HP Workstation

GPIB
Board

GPIB-based
ADC

Sensor

hp
© National Instruments Corporation 1-9 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
Front Panel
1. Open a new front panel by selecting File»New or choosing the

New VI button in the dialog box. For Windows and UNIX, if you
have closed all VIs, select New VI from the LabVIEW dialog box.

Note: If the Controls palette is not visible, select Windows»Show Controls
Palette to display the palette. You can also access the Controls palette by
popping up in an open area of the front panel. To pop up, right-click on
your mouse (<command>-click on Macintosh).

2. Select a Thermometer indicator from Controls»Numeric, and
place it on the front panel by dragging the indicator on to the panel.

3. Type Temp inside the label text box and click on the enter button
on the toolbar.

Note: If you click outside the text box without entering text, the label disappears.
You can show the label again by popping up on the control and selecting
Show»Label.

4. Rescale the thermometer control to display the temperature
between 0.0 and 100.0.

a. Using the Labeling tool, double-click on 10.0 in thermometer
scale to highlight it.

b. Type 100.0 in the scale and click the mouse button anywhere
outside the display window. LabVIEW automatically scales
the intermediary increments.The temperature control should
now look like the following illustration.
LabVIEW Demonstration Guide 1-10 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
Block Diagram
1. Open the block diagram by choosing Windows»Show Diagram.

Select the block diagram objects discussed below from the
Functions palette. For each object that you want to insert, select
the icon and then the object from the top-level of the palette, or
choose the object from the appropriate subpalette. When you
position the mouse on the block diagram, LabVIEW displays an
outline of the object.

Note: If the Functions palette is not visible, select Windows»Show Functions
Palette to display the palette. You can also access the Functions palette by
popping up in an open area of the block diagram.

Place each of the following objects on the block diagram.

The Demo Voltage Read VI (Functions»Tutorial) simulates reading a
voltage from a plug-in data acquisition board.

Multiply function (Functions»Numeric). In this exercise, the function
multiplies the voltage returned by the Demo Voltage Read VI by 100.0.

Numeric Constant (Functions»Numeric). You need two numeric
constants: one for the scaling factor of 100 and one for the device
constant. For the first numeric constant, type 100.0 when the constant
first appears on the block diagram.

2. Create the second numeric constant using a shortcut to
automatically create and wire the constant to the Demo Voltage
Read VI.

a. Using the Wiring tool, pop up on the input marked Board ID
on the Demo Voltage Read VI and select Create Constant
from the pop-up menu. This option automatically creates a
numeric constant and wires it to the Demo Voltage Read VI.

b. Type 1 when the constant first appears on the block diagram.
This changes the default value of zero to one.

Note: You do not have to change to the Labeling tool to insert the value when
using this feature, because the cursor is already in place.

c. Pop up on the constant and choose Show»Label. Using the
Labeling tool, change the default label (Board ID) to
Device.
© National Instruments Corporation 1-11 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
In this example, the two numerics represent the constant 100.0 and the
device for the multiply function.

3. Place a String Constant (Functions»String) on your block
diagram.

4. Using the Wiring tool, pop up on the input marked Channel, at
the bottom left of the Demo Voltage Read VI and select Create
Constant from the pop-up menu. This option automatically creates
a string constant and wires it to the Demo Voltage Read VI.

5. Type 0 when the constant first appears on the block diagram. Pop
up on the constant and choose Show»Label. Notice that in this
instance, Channel appears in the default label so you do not have
to change the label.

In this example, you use the string constant to represent the channel
number.

Note: You can create and wire controls, constants and indicators with most
functions. If these options are not available for a particular function, the
Create Control, Create Constant and Create Indicator options are
disabled on the pop-up menu. For more information on this feature, see
the Create & Wire Controls, Constants, and Indicators section later in this
chapter.

You should have pulled down all of the objects shown in the following
illustration on to your block diagram.

6. Using the Wiring tool, wire the remaining objects together as
explained in the Wiring Techniques section later in this chapter.
LabVIEW Demonstration Guide 1-12 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
Note: To move objects around on the block diagram, click on the Positioning
tool in the Tools palette.

LabVIEW color keys wires to the kind of data each wire carries. Blue
wires carry integers, orange wires carry floating-point numbers, green
wires carry Booleans, and pink wires carry strings.

You can activate the Help window by choosing Help»Show Help.
Placing any of the editing tools on a node displays the inputs and
outputs of that function in the Help window. As you pass an editing
tool over the VI icon, LabVIEW highlights the wiring terminals in both
the block diagram and the Help window. When you begin to wire your
own diagrams, this flashing highlight can help you to connect your
inputs and outputs to the proper terminals.

The Demo Voltage Read VI simulates reading the voltage at Channel
0 of a plug-in board providing artificial data to the Measured Voltage
output. This data represents the real temperature divided by 100. The
VI then multiplies the voltage by 100.0 to convert it to a temperature
in °F.

Blue wire (integer)

Orange wire (floating-point numbers)

Pink wire (string)
© National Instruments Corporation 1-13 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
Wiring Techniques
In the wiring illustrations in this section, the arrow at the end of this
mouse symbol shows where to click and the number printed on the
mouse button indicates how many times to click the mouse button.

The hot spot of the tool is the tip of the unwound wiring segment.

To wire from one terminal to another, click the Wiring tool on the first
terminal, move the tool to the second terminal, and click on the second
terminal. It does not matter at which terminal you start.

When the Wiring tool is over a terminal, the terminal area blinks, to
indicate that clicking connects the wire to that terminal. Do not hold
down the mouse button while moving the Wiring tool from one
terminal to another. You can bend a wire once by moving the mouse
perpendicular to the current direction. To create more bends in the
wire, click the mouse button. To change the direction of the wire, press
the spacebar. Click with the mouse button, to tack the wire down and
move the mouse perpendicularly.

Hot Spot
LabVIEW Demonstration Guide 1-14 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
Tip Strips
When you move the Wiring tool over the terminal of a node, a tip strip
for that terminal pops up. Tip strips consist of small, yellow text
banners that display the name of each terminal. These tip strips should
help you to wire the terminals. The following illustration displays the
tip strip (Measured Voltage) that appears when you place the Wiring
tool over the output of the Demo Voltage Read VI.

Note: When you place the Wiring tool over a node, LabVIEW displays wire stubs
that indicate each input and output. The wire stub has a dot at its end if it
is an input to the node.

Showing Terminals
It is important that you wire the correct terminals of a function. You
can show the icon connector to make correct wiring easier. To do this,
pop up on the function and choose Show»Terminals. To return to the
icon, pop up on the function and again select Show»Terminals.
© National Instruments Corporation 1-15 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
Wire Stretching
You can move wired objects individually or in groups by dragging the
selected objects to a new location with the Positioning tool.

Selecting and Deleting Wires
You may accidentally wire nodes incorrectly. If you do, select the wire
you want to delete and then press <Delete>. A wire segment is a
single, horizontal or vertical piece of wire. The point where three or
four wire segments join is called a junction. A wire branch contains all
the wire segments from one junction to another, from a terminal to the
next junction, or from one terminal to another if there are no junctions
in between. You select a wire segment by clicking on it with the
Positioning tool. Double-clicking selects a branch, and triple-clicking
selects the entire wire.

Selects a segment Selects a branch Selects an
entire wire

segment

junction

bend

segment
LabVIEW Demonstration Guide 1-16 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
Bad Wires
A dashed wire represents a bad wire. You can get a bad wire for a
number of reasons, such as connecting two controls, or connecting a
source terminal to a destination terminal when the data types do not
match (for instance, connecting a numeric to a Boolean). You can
remove a bad wire by clicking on it with the Positioning tool and
pressing <Delete>. Choosing Edit»Remove Bad Wires deletes all
bad wires in the block diagram. This is a useful quick fix to try if your
VI refuses to run or returns the Signal has loose ends error
message.

Note: Do not confuse a black, dashed wire with a dotted wire. A dotted wire
represents a Boolean data type, as the following illustration shows.

Create & Wire Controls, Constants, and Indicators
For terminals acting as inputs on the block diagram, LabVIEW has two
features that you can use to create and wire a control or constant. You
access these features by popping up on the terminal and choosing
Create Control or Create Constant. LabVIEW automatically creates

Dashed Wire (Bad)

Dotted Wire (Good)
© National Instruments Corporation 1-17 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
and wires the correct control or constant type to the terminal input. The
following illustration shows an example pop-up menu.

For a terminal acting as an output on the block diagram, you can choose
a Create Indicator feature to create and then wire an indicator to the
terminal. You access this feature by popping up on the terminal and
choosing Create Indicator. LabVIEW automatically creates and wires
the correct indicator type to the output of a terminal.

Note: Once you choose Create Indicator, you must switch to the front panel and
use the Positioning tool to select and delete the indicator.

Run the VI
1. To make the front panel active by clicking on the window title bar

or by choosing Windows»Show Panel. In Windows and on the
Macintosh, you can also make the front panel active by clicking
anywhere on it.

2. Run the VI by clicking on the run button in the toolbar of the front
panel.

Notice that you have to rerun the VI each time. If you want to
repeatedly run the VI, you must click on the continuous run button.

3. Click on the continuous run button in the toolbar.

4. Click on the continuous run button again to deselect it. The VI then
completes execution and quits.
LabVIEW Demonstration Guide 1-18 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
Note: The continuous run button is not the preferred method for repeating block
diagram code. You should use a looping structure. This is covered in
Chapter 3, Loops and Charts, of this demonstration guide.

Documenting the VI
You can document the VI by choosing Windows»Show VI Info....
Type the description of the VI in the VI Information dialog box. You
can then recall the description by again selecting Windows»Show VI
Info....

1. Document the VI. Select Windows»Show VI Info.... Type the
description for the VI, as shown in the following illustration, and
click on OK.

You can view the descriptions of objects on the front panel (or their
respective terminals on the block diagram) by popping up on the object
and choosing Data Operations»Description....

Note: You cannot change the description while running a VI.
© National Instruments Corporation 1-19 LabVIEW Demonstration Guide

Chapter 1 Introduction to LabVIEW
The following illustration is an example pop-up menu that appears
while you are running a VI. You cannot add to or change the
description while running the VI, but you can view any previously
entered information.

2. Document the thermometer indicator.

a. On the front panel, pop up on the thermometer indicator and
choose Data Operations»Description....

b. Type the description for the indicator, as shown in the
following illustration, and click on OK.
LabVIEW Demonstration Guide 1-20 © National Instruments Corporation

Chapter 1 Introduction to LabVIEW
3. Show the description you created again by popping up on the
thermometer indicator and selecting Data Operations»
Description....

Saving and Loading VIs
As with other applications, you can save your VI to a file in a regular
directory. With LabVIEW, you can also save multiple VIs in a single
file called a VI library. The tutorial.llb library is an example of a
VI library.

If you are using Windows 3.1, you should save your VIs into VI
libraries because you can use long file names (up to 255 characters)
with mixed cases.

You should not use VI libraries unless you need to transfer your VIs to
Windows 3.1. Saving VIs as individual files is more effective because
you can copy, rename, and delete files more easily than if you are using
a VI library.

Even though you may not save your own VIs in VI libraries, you
should be familiar with how they work. For that reason, you should
save all VIs that you create during this demonstration guide into VI
libraries to become familiar with using them.

Save your VI in a VI library.

1. Select File»Save As.... If you are using UNIX, specify a location in
the file system where you have write privileges. For example, you
might select your home directory.

2. Name the VI and save it in mywork.llb. Look at the name in the
ring control at the top of the dialog box. Make sure it is
mywork.llb. If it is not, click on mywork.llb in the directory
list to make sure you save your VI in the right place.

a. Type My Thermometer.vi in the dialog box.

b. Click on OK.

3. Close the VI by selecting File»Close.
© National Instruments Corporation 1-21 LabVIEW Demonstration Guide

Creating a SubVI
© National Instruments Corporation 2-1 LabVIEW Demons
Chapter

2

You Will Learn:
• What a subVI is.

• How to create the icon and connector.

• How to use a VI as a subVI.

Understanding Hierarchy
One of the keys to creating LabVIEW applications is understanding
and using the hierarchical nature of the VI. After you create a VI, you
can use it as a subVI in the block diagram of a higher-level VI.
Therefore, a subVI is analogous to a subroutine in C. Just as there is no
limit to the number of subroutines you can use in a C program, there is
no limit to the number of subVIs you can use in a LabVIEW program.
You can also call a subVI inside another subVI.

When creating an application, you start at the top-level VI and define
the inputs and outputs for the application. Then, you construct subVIs
to perform the necessary operations on the data as it flows through the
block diagram. If a block diagram has a large number of icons, group
them into a lower-level VI to maintain the simplicity of the block
diagram. This modular approach makes applications easy to debug,
understand, and maintain.

Creating the SubVI
OBJECTIVE To make an icon and connector for the My Thermometer VI you

created in Chapter 1 and use the VI as a subVI.

To use a VI as a subVI, you must create an icon to represent it on the
block diagram of another VI, and a connector pane to which you can
connect inputs and outputs.
tration Guide

Chapter 2 Creating a SubVI
Icon
Create the icon, which represents the VI in the block diagram of other
VIs. An icon can be a pictorial representation of the purpose of the VI,
or it can be a textual description of the VI or its terminals.

1. If you have closed the My Thermometer VI, open it by selecting
File»Open... or by clicking on the Open VI button in the dialog
box. Open the mywork.llb. In Windows, you can find this
library in the temporary directory or in windows\temp. On the
Macintosh, you can find this directory in the Temporary
Folder in the System Folder. In Unix, the mywork.llb is
in the /tmp directory.

2. Select My Thermometer.vi from mywork.llb.

3. Invoke the Icon Editor by popping up in the icon pane in the upper
right corner of the front panel and choosing Edit Icon. As a
shortcut, you can also double-click on the icon pane to edit the
icon.

Icon Editor Tools and Buttons
The tools to the left of the editing area perform the following functions:

Pencil tool Draws and erases pixel by pixel.

Line tool Draws straight lines. Press
<Shift>and then drag this tool to
draw horizontal, vertical, and diagonal
lines.

Dropper tool Copies the foreground color from an
element in the icon.

Fill bucket tool Fills an outlined area with the
foreground color.

Rectangle tool Draws a rectangular border in the
foreground color. Double-click on this
tool to frame the icon in the foreground
color.

Filled rectangle tool Draws a rectangle bordered with the
foreground color and filled with the
background color. Double-click to
LabVIEW Demonstration Guide 2-2 © National Instruments Corporation

Chapter 2 Creating a SubVI
frame the icon in the foreground color
and fill it with the background color.

Select tool Selects an area of the icon for moving,
cloning, or other changes.

Text tool Enters text into the icon design.

Foreground/ Background Displays the current foreground and
background colors. Click on each to get
a color palette from which you can
choose new colors.

The buttons at the right of the editing screen perform the following
functions:

Cancels the last operation you performed.

Saves your drawing as the VI icon and returns to the front panel.

Returns to the front panel without saving any changes.

4. Erase the default icon.

a. With the Select tool, select the interior section of the default
icon, shown at left.

a. Press the <Delete> key to erase the interior of the default
icon.

5. Draw the thermometer with the Pencil tool.

6. Create the text with the Text tool. To change the text font,
double-click on the Text tool. Experiment with the editor.

Undo

OK

Cancel
© National Instruments Corporation 2-3 LabVIEW Demonstration Guide

Chapter 2 Creating a SubVI
Your icon should look similar to the following illustration.

7. Close the Icon Editor by clicking on OK once you complete your
icon. The new icon appears in the icon pane in the upper right
corner of the front panel.

Connector
Now, you can create the connector.

1. Define the connector terminal pattern by popping up in the icon
pane on the front panel and choosing Show Connector, as the
following illustration shows.
LabVIEW Demonstration Guide 2-4 © National Instruments Corporation

Chapter 2 Creating a SubVI
Because LabVIEW selects a terminal pattern based on the number of
controls and indicators on the front panel, there is only one
terminal—the thermometer indicator.

2. Assign the terminal to the thermometer.

a. Click on the terminal in the connector. The cursor automatically
changes to the Wiring tool, and the terminal turns black.

b. Click on the thermometer indicator. A moving dashed line frames
the indicator, as the following illustration shows.

If you click in an open area on the front panel, the dashed line
disappears and the selected terminal dims, indicating that you have
assigned the indicator to that terminal. If the terminal is white, you
have not made the connection correctly. Repeat the previous steps if
necessary.

3. Save the VI by choosing File»Save. On the Macintosh, if you are
using the native file dialog box to save into a VI library, you must
click on the Use LLBs button before selecting the VI library.

This VI is now complete and ready for use as a subVI in other VIs. The
icon represents the VI in the block diagram of the calling VI. The
connector (with one terminal) outputs the temperature.

Note: The connector specifies the inputs and outputs to a VI when you use it as
a subVI. Remember that front panel controls can be used as inputs only;
front panel indicators can be used as outputs only.

4. Close the VI by choosing File»Close.

single terminal
connector pane

connector

control
© National Instruments Corporation 2-5 LabVIEW Demonstration Guide

Chapter 2 Creating a SubVI
Using a VI as a SubVI
You can use any VI that has an icon and a connector as a subVI in
another VI. In the block diagram, you select VIs to use as subVIs from
Functions»Select a VI.... Choosing this option produces a file dialog
box, from which you can select any VI in the system. If you open a VI
that does not have an icon and a connector, a blank, square box appears
in the calling VI’s block diagram. You cannot wire to this node.

A subVI is analogous to a subroutine. A subVI node (icon/connector)
is analogous to a subroutine call. The subVI node is not the subVI
itself, just as a subroutine call statement in a program is not the
subroutine itself. A block diagram that contains several identical subVI
nodes calls the same subVI several times.

OBJECTIVE To build a VI that uses the My Thermometer VI as a subVI.

The My Thermometer VI you built returns a temperature in degrees
Fahrenheit. You will take that reading and convert the temperature to
degrees Centigrade.

Front Panel
LabVIEW Demonstration Guide 2-6 © National Instruments Corporation

Chapter 2 Creating a SubVI
1. Open a new front panel by selecting File»New or by clicking on the
New VI button in the dialog box.

2. Choose the thermometer from Controls»Numeric. Type Temp in
deg C to label it. If you have clicked outside of the thermometer
before typing in your label, it will disappear. To show the label
again, pop up on the thermometer and choose Show»Label and
then type in your label.

3. Change the range of the thermometer to accommodate the
temperature values. With the Operating tool, double-click on the
lower limit, type 20, and press <Enter> on the numeric keypad.
You do not have to type the decimal and trailing zeroes. LabVIEW
adds them automatically when you enter the value. Similarly,
change the upper limit of the thermometer to 40 and press
<Enter> on the numeric keypad. LabVIEW automatically
adjusts the intermediate values.

Each time you create a new control or indicator, LabVIEW creates the
corresponding terminal in the block diagram. The terminal symbols
suggest the data type of the control or indicator. For example, a DBL
terminal represents a double-precision, floating-point number; a TF
terminal is a Boolean; an I16 terminal represents a regular, 16-bit
integer; and an ABC terminal represents a string.

Block Diagram
1. Select Windows»Show Diagram.

2. Pop up in a free area of the block diagram and choose
Functions»Select a VI....A dialog box appears. Locate and open
the mywork.llb library. (In Windows, you can find this library in
the temporary directory or windows\temp. On the Macintosh,
this directory is in System Folder\Temporary Folder. In
Unix, the mywork.llb is in the /tmp directory.) Double-click
on My Thermometer.vi or highlight it and click on Open in the
dialog box. LabVIEW places the My Thermometer VI on the block
diagram.
© National Instruments Corporation 2-7 LabVIEW Demonstration Guide

Chapter 2 Creating a SubVI
3. Add the other objects to the block diagram as shown in the
following illustration.

Numeric Constant (Functions»Numeric). Add three numeric constants
to the block diagram. Assign the values of 32.0, 5.0, and 9.0 to the
constants by using the Labeling tool.

Note: You can tell the type of constant the number is by its color. Blue numeric
constants are integers, and orange constants are double-precision
numbers. LabVIEW automatically converts numbers to the appropriate
format when necessary.

Note: Remember, you can use the pop up on functions and choose Create
Constant to automatically create and wire the correct constant to a
function.

The Subtract function (Functions»Numeric) subtracts 32 from the
Fahrenheit value for the conversion to Centigrade.

The Divide function (Functions»Numeric) computes the value of 5/9
for the temperature conversion.

The Multiply function (Functions»Numeric) returns the Centigrade
value from the conversion process.

4. Wire the diagram objects as shown in the previous block diagram
illustration.
LabVIEW Demonstration Guide 2-8 © National Instruments Corporation

Chapter 2 Creating a SubVI
Note: A broken wire between the Thermometer icon and the Temp in deg C
terminal might indicate that you have assigned the subVI connector
terminal to the front panel indicator incorrectly. Review the instructions
in the Creating the SubVI section earlier in this chapter. When you have
modified the subVI, you may need to select Relink to SubVI from the icon
pop-up menu. If necessary, choose Edit»Remove Bad Wires.

5. Return to the front panel and click on the run button in the toolbar.
Block Diagram Toolbar

The block diagram contains additional options not included on the
front panel toolbar.

Block Diagram Toolbar:

The block diagram toolbar contains the following buttons that you can
use for debugging VIs.

Hilite execute button Displays data as it passes through
wires

Step into button Steps into loops, subVIs, and so on

Step over button Begins single stepping, steps over a
loop, subVI, and so on

Step out button Completes execution of loops, VIs,
block diagrams, and so on

Some Debugging Techniques
The thermometer should display a value in the selected range.
However, suppose you want to see the Fahrenheit value for comparison
and debugging. LabVIEW contains some tools that can help you. In
this exercise, you examine the probe and execution highlighting
features.

1. Select Windows»Show Diagram.

2. Select the Probe tool from the Tools palette. Click with the Probe
tool on the temperature value (wire) coming out of the My
Thermometer subVI. A Probe window pops up with the title
© National Instruments Corporation 2-9 LabVIEW Demonstration Guide

Chapter 2 Creating a SubVI
Temp 1 and a yellow glyph with the number of the probe, as
shown in the following illustration. The Probe window also
appears on the front panel.

3. Return to the front panel. Move the Probe window so you can view
both the probe and thermometer values as shown in the following
illustration. Run the VI. The temperature in degrees Fahrenheit
appears in the Probe window.

Note: The temperature values that appear on your screen may be different than
what is shown in this illustration. Refer to the Numeric Conversion section
in Chapter 3, Loops and Charts, for more information.
LabVIEW Demonstration Guide 2-10 © National Instruments Corporation

Chapter 2 Creating a SubVI
4. Close the Probe window by clicking in the close box at the top of
the Probe window title bar.

Another useful debugging technique is to examine the flow of data in
the block diagram using LabVIEW’s execution highlighting feature.

5. Return to the block diagram of the VI by choosing
Windows»Show Diagram.

6. Begin execution highlighting by clicking on the hilite execute
button, in the toolbar, shown at left. The hilite execute button
changes to an illuminated light bulb.

7. Click on the run button to run the VI, and notice that execution
highlighting animates the VI block diagram execution. Moving
bubbles represent the flow of data through the VI. Also notice that
data values appear on the wires and display the values contained
in the wires at that time, as shown in the following block diagram,
just as if you had probed the wire.

Notice the order in which the different nodes in LabVIEW execute. In
conventional text-based languages, the program statements execute in
the order in which they appear. LabVIEW, however, uses data flow
programming. In data flow programming, a node executes when data is
available at all of the node inputs, not necessarily in a top-to-bottom or
left-to-right manner.

The preceding illustration shows that LabVIEW can multitask between
paths 1 and 2 because there is no data dependency, that is, nothing in
path 1 depends on data from path 2, and nothing in path 2 depends on
data from path 1. Path 3 must execute last, however, because the
multiply function is dependent upon the data from the Subtract and
Divide functions.

Path 1

Path 2

Path 3
© National Instruments Corporation 2-11 LabVIEW Demonstration Guide

Chapter 2 Creating a SubVI
Execution highlighting is a useful tool for examining the data flow
nature of LabVIEW.

You can also use the single stepping buttons if you want to have more
control over the debugging process.

8. Begin single stepping by clicking on the step over button, in the
toolbar. Clicking on this button displays the first execution
sequence in the VI. After LabVIEW completes this portion of the
sequence, it highlights the next item that executes in the VI.

9. Step over the divide function by clicking on the step over button,
in the toolbar. Clicking on this button executes the Divide
function. After LabVIEW completes this portion of the sequence,
it highlights the next item that executes in the VI.

10. Step into the My Thermometer subVI by clicking on the step into
button, in the toolbar. Clicking on this button opens the front panel
and block diagram of your thermometer subVI. You can now
choose to single step through or run the subVI.

11. Finish executing the block diagram by clicking on the step out
button, in the toolbar. Clicking on this button completes all
remaining sequences in the block diagram. After LabVIEW
completes this portion of the sequence, it highlights the next item
that executes in the VI. You can also hold down the mouse button
when clicking on the step out button to access a pop-up menu. On
this pop-up menu, you can select how far the VI executes before
pausing. The following illustration shows your finish execution
options in the pop-up menu of the step out button.

12. Select File»Save as and save the VI in mywork.llb. Name the VI
Using My Thermometer.vi, and then close it.

Opening, Operating, and Changing SubVIs
You can open a VI used as a subVI from the block diagram of the
calling VI. You open the block diagram of the subVI by
double-clicking on the subVIs icon or by selecting Project»This VI’s
LabVIEW Demonstration Guide 2-12 © National Instruments Corporation

Chapter 2 Creating a SubVI
SubVIs. You then open the block diagram by selecting
Windows»Show Diagram.

Any changes you make to a subVI alter only the version in memory
until you save the subVI. Notice that the changes affect all calls to the
subVI and not just the node you used to open the VI.

Hierarchy Window
You use the Hierarchy window (Project»Show VI Hierarchy) to
visually display the dependencies of VIs by providing information on
VI callers and subVIs. This window contains a toolbar that you can use
to configure several types of settings for displayed items. The
following illustration shows an example of the VI hierarchy toolbar.

You can use buttons on the Hierarchy window toolbar or the VIEW
menu, or pop up on an empty space in the window to access the
following options.

Redraw Rearranges nodes after successive
operations on hierarchy nodes if you
need to minimize line crossings and
maximize symmetric aesthetics. If a
focus node exists, you then scroll
through the window so that the first
root that shows subVIs is visible.

Switch to vertical layout Arranges the nodes from
top-to-bottom, placing roots at the top.

Switch to horizontal layout Arranges the nodes from left-to-right,
placing roots on the left side.

Include/Exclude VIs in Toggles the hierarchy graph to include
VI libraries or exclude VIs in VI libraries.

Include/Exclude global Toggles the hierarchy graph to include
variables or exclude global variables.
© National Instruments Corporation 2-13 LabVIEW Demonstration Guide

Chapter 2 Creating a SubVI
Include/Exclude typedefs Toggles the hierarchy graph to include
or exclude typedefs.

In addition, the View menu and pop-up menus include Show all VIs
and Full VI Path in Label options that you cannot access on the
toolbar.

As you move the Operating tool over objects in the Hierarchy window,
LabVIEW displays the name of the VI below the VI icon.

Use the <Tab> key toggle between the Positioning and Scroll window
tools. This feature is useful for moving nodes from the Hierarchy
window to the block diagram.

You can drag a VI or subVI node to the block diagram or copy it to the
clipboard by clicking on the node. <Shift>-click on a VI or subVIs
node to select multiple objects for copying to other block diagrams or
front panels. Double-clicking on a VI or subVI node opens the front
panel of that node.

Any VIs that contain subVIs have an arrow button next to the VI that
you can use to show or hide the VI’s subVIs. Clicking on the red arrow
button or double-clicking on the VI itself opens the VI’s subVIs. A
black arrow button on a VI node means that all subVIs are displayed.
You can also pop up on a VI or subVI node to access a menu with
options, such as showing or hiding subVIs, open the VI or subVI front
panel, edit the VI icon, and so on.

Search Hierarchy
You can also search currently visible nodes in the Hierarchy window
by name. You initiate the search by typing in the name of the node,
anywhere on the window. As you type in the text, a search window
appears, which displays the text as you type it in and concurrently
LabVIEW Demonstration Guide 2-14 © National Instruments Corporation

Chapter 2 Creating a SubVI
searches through the hierarchy. The following illustration shows the
search hierarchy.

After finding the correct node, you can press <Enter> to search for
the next node that matches the search string, or you can press
<Shift-Enter> (Windows); <shift-return> (Macintosh);
<Shift-Return> (Sun); or <Shift-Enter> (HP-UX) to find the
previous node that matches the search string.

Online Help for SubVI Nodes
When you place one of the tools on a subVI node, the Help window
shows the icon for the subVI with wires attached to each terminal. The
following illustration shows an example of online help. This is the
© National Instruments Corporation 2-15 LabVIEW Demonstration Guide

Chapter 2 Creating a SubVI
Digital Thermometer VI from Functions»Tutorial. Your thermometer
VI also contains the text you typed in the VI Information dialog box.

Simple/Complex Help View
In the Help window, you can specify whether you want to display the
simple or complex view for block diagram objects.

Note: When you open the Help window, LabVIEW automatically defaults to the
simple help view.

In simple help view, LabVIEW displays only the required and
recommended inputs for VIs and functions. In complex help view,
LabVIEW displays the required, recommended, and optional inputs for
VIs and functions. It also displays the full path name of a VI. To access
the simple help view, press the Simple/Complex Diagram Help switch,
or choose Help»Simple Diagram Help. The following illustration
shows both views of the Simple/Complex Diagram Help switch.

First select Help»Show Help. Then place the Positioning
tool on the subVI to display its wiring diagram.

Simple Help Complex Help
LabVIEW Demonstration Guide 2-16 © National Instruments Corporation

Chapter 2 Creating a SubVI
In the Help window, required inputs appear in bold text, recommended
inputs appear in plain text, and optional inputs appear in gray text.
When designing your own VIs, you can specify which inputs are
required, recommended, or optional by popping up on an input or
output on the connector pane and selecting the correct option from the
This Connection is submenu.

Links to Online Help Files
In the Help Window, you can click on the online help button to access
LabVIEW’s online help as well as help files that you have created
using a help compiler. If you want to create your own help file, you
must specify the link to the help file by clicking on the icon pane and
selecting VI Setup.... When the VI Setup dialog box opens, choose
Documentation from the ring control at the top of the box, and then
enter the path of the help file in the Help Path box. The following
illustration shows the options that appear in the VI Setup dialog box.

You select Browse... to associate the help file and topic to associate
with your VI.
© National Instruments Corporation 2-17 LabVIEW Demonstration Guide

Loops and Charts
© National Instruments Corporation 3-1 LabVIEW Demons
Chapter

3

You Will Learn:
• How to use a While Loop.

• How to display data in a chart.

• What a shift register is and how to use it.

• How to use a For Loop.

Structures control the flow of data in a VI. LabVIEW has four
structures: the While Loop, the For Loop, the Case structure, and the
Sequence structure. This chapter introduces the While Loop and For
Loop structures along with the chart and the shift register. The Case
and Sequence structures are explained in Chapter 5, Case and Sequence
Structures and the Formula Node.

Using While Loops and Charts
OBJECTIVE To use a While Loop and a chart for acquiring and displaying data in

real time.

You will build a VI that generates random data and displays it on a
chart. A knob control on the front panel will adjust the loop rate
between 0 and 2 seconds and a switch will stop the VI. You will learn
to change the mechanical action of the switch so you do not have to turn
on the switch each time you run the VI. Use the front panel in the
following illustration to get started.
tration Guide

Chapter 3 Loops and Charts
Front Panel

1. Open a new front panel by selecting File»New or by clicking on
the New VI button in the dialog box.

2. Place a vertical switch (Controls»Boolean) in the front panel.
Label the switch Enable. You use this switch to stop the
acquisition.

3. Use the Labeling tool to create the free label for ON and OFF.You
can create these labels by clicking on the Labeling tool and then
on your front panel and typing in the label text. Use the Color tool
to make the free label border transparent. Click on the Color tool
and select the T in the bottom left corner of the color palette to
make the label transparent.

4. Place a waveform chart (Controls»Graph) in the front panel.
Label the chart Random Signal. The chart displays random data
in real time.

Note: Make sure that you select a waveform chart and not a waveform graph. In
the Graph palette the waveform chart appears closest to the left side of the
palette.

5. Pop up on the chart and choose Show»Digital Display. The digital
display shows the latest value.

6. Using the Labeling tool, double-click on 10.0 in the chart,
type 1.0, and click outside the label area. The click enters the
LabVIEW Demonstration Guide 3-2 © National Instruments Corporation

Chapter 3 Loops and Charts
value. You can also press <Enter> (Windows); <return>
(Macintosh); <Return> (Sun); or <Enter> (HP-UX) to input
your change to the scale.

7. Place a knob (Controls»Numeric) in the front panel. Label the
knob Loop Delay (sec). This knob controls the timing of the
While Loop later in this exercise. Pop up on the knob and deselect
Show»Digital Display to hide the digital display that shows by
default.

8. Using the Labeling tool, double-click on 10.0 in the scale around
the knob, type 2.0, and click outside the label area to enter the new
value.

Block Diagram

1. Open the block diagram.

2. Place the While Loop in the block diagram by selecting it from
Functions»Structures. The While Loop is a resizable box that is
not dropped on the diagram immediately. Instead, you have the
chance to position and resize it. To do so, click in an area above
and to the left of all the terminals. Continue holding down the
mouse button, and drag out a rectangle that encompasses the
terminals. A While Loop is then created with the specified location
and size.
© National Instruments Corporation 3-3 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts
The While Loop, shown in the following illustration, is a resizable box
you use to execute the diagram inside it until the Boolean value passed
to the conditional terminal (an input terminal) is FALSE. The VI
checks the conditional terminal at the end of each iteration; therefore,
the While Loop always executes at least once. The iteration terminal is
an output numeric terminal that contains the number of times the loop
has executed. However, the iteration count always starts at zero, so if
the loop runs once, the iteration terminal outputs 0.

The While Loop is equivalent to the following pseudo-code:

Do

Execute Diagram Inside the Loop (which sets the condition)

While Condition is TRUE

3. Select the Random Number (0-1) function from
Functions»Numeric.

4. Wire the diagram as shown in the opening illustration of this Block
Diagram section, connecting the Random Number (0-1) function
to the Random Signal chart terminal, and the Enable switch to the
conditional terminal of the While Loop. Leave the Loop Delay
terminal unwired for now.

5. Return to the front panel and turn on the vertical switch by clicking
on it with the Operating tool. Run the VI.

The While Loop is an indefinite looping structure. The diagram
within its border executes as long as the specified condition is true. In
this example, as long as the switch is on (TRUE), the diagram
continues to generate random numbers and display them on the chart.

conditional
terminal

iteration
terminal

iteration
terminal

conditional
terminal
LabVIEW Demonstration Guide 3-4 © National Instruments Corporation

Chapter 3 Loops and Charts
6. To stop the loop, click on the vertical switch. Turning the switch
off sends the value FALSE to the loop conditional terminal and
stops the loop.

7. The chart has a display buffer that retains a number of points after
they have scrolled off the display. Give the chart a scrollbar by
popping up on the chart and selecting Show»Scrollbar. You can
use the Positioning tool to adjust the size and position of the
scrollbar.

To scroll through the chart, click and hold down the mouse button on
either arrow in the scrollbar.

To clear the display buffer and reset the chart, pop up on the chart and
choose Data Operations»Clear Chart.

Note: The display buffer default size is 1,024 points. You can increase or
decrease this buffer size by popping up on the chart and choosing Chart
History Length....

Adding Timing
When you ran the VI, the While Loop executed as quickly as possible.
However, you may want to take data at certain intervals, such as once
per second or once per minute.
© National Instruments Corporation 3-5 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts
LabVIEW’s timing functions express time in milliseconds (ms),
however, your operating system may not maintain this level of timing
accuracy. The following list contains guidelines for determining the
accuracy of LabVIEW’s timing functions on your system.

• (Windows 3.1) The timer has a default resolution of 55 ms. You
can configure LabVIEW to have 1 ms resolution by selecting
Edit»Preferences..., selecting Performance and Disk from the
Paths ring, and unchecking the Use Default Timer checkbox.
LabVIEW does not use the 1 ms resolution by default because it
places a greater load on your operating system.

• (Windows 95/NT) The timer has an resolution of 1 ms. However,
this is hardware dependent, so on slower systems, such as
an 80386, you may have lower resolution timing.

• (Macintosh) For 68K systems without the QuickTime extension,
the timer has an resolution of 16 2/3 ms (1/60th of a second). If you
have a Power Macintosh or have QuickTime installed, timer
resolution is 1 ms.

• (UNIX) The timer has a resolution of 1 ms.

You can control loop timing using the Wait Until Next ms Multiple
function (Functions»Time & Dialog). This function ensures that no
iteration is shorter than the specified number of milliseconds.

1. Modify the VI to generate a new random number at a time interval
specified by the knob, as shown in the preceding diagram.

Wait Until Next ms Multiple function (Functions»Time & Dialog). In
this exercise, you multiply the knob terminal by 1000 to convert the
LabVIEW Demonstration Guide 3-6 © National Instruments Corporation

Chapter 3 Loops and Charts
knob value in seconds to milliseconds. Use this value as the input to the
Wait Until Next ms Multiple function.

Multiply function (Functions»Numeric). In this exercise, the multiply
function multiplies the knob value by 1000 to convert seconds to
milliseconds.

Numeric Constant (Functions»Numeric).The numeric constant holds
the constant by which you must multiply the knob value to get a
quantity in milliseconds. Thus, if the knob has a value of 1.0, the loop
executes once every 1000 milliseconds (once a second).

2. Run the VI. Rotate the knob to get different values for the number
of seconds.

3. Save and close the VI in mywork.llb. Name it My Random
Signal.vi.

For Loop

You place the For Loop on the block diagram by selecting it from
Functions»Structures. A For Loop (see preceding illustration) is a
resizable box, like the While Loop. Like the While Loop, it is not
dropped on the diagram immediately. Instead, a small icon
representing the For Loop appears in the block diagram, and you have
the opportunity to size and position it. To do so, first click in an area
above and to the left of all the terminals. While holding down the
mouse button, drag out a rectangle that encompasses the terminals you
want to place inside the For Loop. When you release the mouse button,
LabVIEW creates a For Loop of the correct size and in the position you
selected.

Loop Count
Numerical Input

Numerical
Output
© National Instruments Corporation 3-7 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts
The For Loop executes the diagram inside its border a predetermined
number of times. The For Loop has two terminals:

the count terminal (an input terminal) The count terminal specifies the
number of times to execute the loop.

the iteration terminal (an output terminal). The iteration terminal
contains the number of times the loop has executed.

The For Loop is equivalent to the following pseudo-code:

For i = 0 to N-1

Execute Diagram Inside The Loop

The example in the following illustration shows a For Loop that
generates 100 random numbers and displays the points on a chart.

Numeric Conversion
Until now, all the numeric controls and indicators that you have used
have been double-precision, floating-point numbers represented with
32 bits. LabVIEW, however, can represent numerics as integers (byte,
word, or long) or floating-point numbers (single-, double-, or
extended-precision). The default representation for a numeric is a
double-precision, floating-point.

If you wire two terminals together that are of different data types,
LabVIEW converts one of the terminals to the same representation as
the other terminal. As a reminder, LabVIEW places a gray dot, called
a coercion dot, on the terminal where the conversion takes place.

For example, consider the For Loop count terminal. The terminal
representation is a long integer. If you wire a double-precision,
floating-point number to the count terminal, LabVIEW converts the
LabVIEW Demonstration Guide 3-8 © National Instruments Corporation

Chapter 3 Loops and Charts
number to a long integer. Notice the gray dot in the count terminal of
the first For Loop.

Note: When the VI converts floating-point numbers to integers, it rounds to the
nearest integer. If a number is exactly halfway between two integers, it is
rounded to the nearest even integer. For example, the VI rounds 6.5 to 6,
but rounds 7.5 to 8. This is an IEEE Standard method for reading
numbers. See the IEEE Standard 754 for details.

Using a For Loop
OBJECTIVE To use a For Loop and shift registers to calculate the maximum value

in a series of random numbers. You will use a For Loop (N = 100)
instead of a While Loop.

Front Panel

Gray
Dot

digital indicator

with scrollbar
and digital display

Waveform chart

showing
© National Instruments Corporation 3-9 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts
1. Open a new front panel and add the objects shown in the preceding
illustration to it.

a. Place a digital indicator on the front panel and label it
Maximum Value.

b. Place a waveform chart on the front panel and name it
Random Data. Change the scale of the chart to range
from 0.0 to 1.0.

c. Pop up on the chart and choose Show»Scrollbar and
Show»Digital Display. Pop up and disable the Show»Palette
option if it is selected.

Block Diagram

1. Open the block diagram.

2. Add the For Loop (Functions»Structures).

3. Add the shift register by popping up or right clicking on the right
or left border of the For Loop and choosing Add Shift Register.
You can learn more about shift registers in the next section.

4. Add the other objects to the block diagram.

Random Number (0-1) function (Functions»Numeric) to generate the
random data.

Numeric Constant (Functions»Numeric). The For Loop needs to know
how many iterations to make. In this case, you execute the For
Loop 100 times.
LabVIEW Demonstration Guide 3-10 © National Instruments Corporation

Chapter 3 Loops and Charts
Numeric Constant (Functions»Numeric). You set the initial value of
the shift register to zero for this exercise because you know that the
output of the random number generator is from 0.0 to 1.0.

You must know something about the data you are collecting to
initialize a shift register. For example, if you initialize the shift register
to 1.0, then that value is already greater than all the expected data
values, and is always the maximum value. If you did not initialize the
shift register, then it would contain the maximum value of a previous
run of the VI. Therefore, you could get a maximum output value that is
not related to the current set of collected data.

Max & Min function (Functions»Comparison) takes two numeric
inputs and outputs the maximum value of the two in the top right corner
and the minimum of the two in the bottom right corner. Because you
are only interested in the maximum value for this exercise, wire only
the maximum output and ignore the minimum output.

5. Wire the terminals as shown. If the Maximum Value terminal were
inside the For Loop, you would see it continuously updated, but
because it is outside the loop, it contains only the last calculated
maximum.

Note: Updating indicators each time a loop iterates is time-consuming and you
should try to avoid it when possible to increase execution speed.

6. Run the VI.

7. Save the VI. Name the VI My Calculate Max.vi.
© National Instruments Corporation 3-11 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts
Shift Registers
Shift registers (available for While Loops and For Loops) transfer
values from one loop iteration to the next. You create a shift register
by popping up on the left or right border of a loop and selecting Add
Shift Register.

The shift register contains a pair of terminals directly opposite each
other on the vertical sides of the loop border. The right terminal stores
the data upon the completion of an iteration. That data shifts at the end
of the iteration and appears in the left terminal at the beginning of the
next iteration (see the following illustration). A shift register can hold
any data type–numeric, Boolean, string, array, and so on. The shift
register automatically adapts to the data type of the first object that you
wire to the shift register.
LabVIEW Demonstration Guide 3-12 © National Instruments Corporation

Chapter 3 Loops and Charts
You can configure the shift register to remember values from several
previous iterations. This feature is useful for averaging data points.
You create additional terminals to access values from previous
iterations by popping up on the left or right terminal and choosing Add
Element. For example, if a shift register contains three elements in the
left terminal, you can access values from the last three iterations.

Initial
Value

Initial
Value

New
Value

Previous
Value

New
Value

Previous
Value

New
Value

New
Value

 Before Loop Begins First Iteration

Subsequent Iterations Last Iteration

Previous values are
available at the left
terminals

Latest value
passes to
right terminal

Pop up on left
terminal to add
new elements or Pop up on

border for
new shift register

use Positioning
tool to resize the
left terminal to
expose more
elements

Contains i-1
Contains i-2
Contains i-3
© National Instruments Corporation 3-13 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts
Using Shift Registers
OBJECTIVE You will build a VI that displays two random plots on a chart. The two

plots should consist of a random plot and a running average of the last
four points of the random plot.

Front Panel

1. Open a new front panel and create the front panel shown in the
preceding illustration.

2. After you add the waveform chart to the front panel, change the
scale to range from 0.0 to 2.0.

3. After adding the vertical switch, pop up on the button on the front
panel and select Mechanical Action»Latch When Pressed and set
the ON state to be the default by choosing Operate»Make
Current Values Default.
LabVIEW Demonstration Guide 3-14 © National Instruments Corporation

Chapter 3 Loops and Charts
Block Diagram

1. Add the While Loop (Functions»Structures) in the block diagram
and create the shift register.

a. Pop up on the left or right border of the While Loop and
choose Add Shift Register.

b. Add an extra element by popping up on the left terminal of the
shift register and choosing Add Element. Add a third element
in the same manner as the second.

2. Build the block diagram shown in the previous illustration.

Random Number (0-1) function (Functions»Numeric) generates raw
data.

Compound Arithmetic function (Functions»Numeric). In this exercise,
the compound arithmetic function returns the sum of random numbers
from two iterations. To add more inputs, pop up on an input and choose
Add Input from the pop-up menu.
© National Instruments Corporation 3-15 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts
Divide function (Functions»Numeric). In this exercise, the divide
function returns the average of the last four random numbers.

Numeric Constant (Functions»Numeric). During each iteration of the
While Loop, the Random Number (0-1) function generates one random
value. The VI adds this value to the last three values stored in the left
terminals of the shift register. The Random Number (0-1) function
divides the result by four to find the average of the values (the current
value plus the previous three). The average is then displayed on the
waveform chart.

Wait Until Next ms Multiple function (Functions»Time & Dialog),
ensures that each iteration of the loop occurs no faster than the
millisecond input. The input is 500 milliseconds for this exercise. If
you pop up on the icon and choose Show»Label, the label Wait Until
Next ms Multiple appears.

3. Pop up on the input of the Wait Until Next ms Multiple function
and select Create Constant. A numeric constant appears and is
automatically wired to the function.

4. Type 500 in the label. The numeric constant wired to the Wait
Until Next ms Multiple function specifies a wait
of 500 milliseconds (one half-second). Thus, the loop executes
once every half-second.

Notice that the VI initializes the shift registers with a random number.
If you do not initialize a shift register terminal, it contains the default
value or the last value from the previous run. In this case, the first few
averages would be meaningless.

5. Run the VI and observe the operation. LabVIEW only plots the
average on the graph.

Note: Remember to initialize shift registers to avoid incorporating old or default
data into your current data measurements
LabVIEW Demonstration Guide 3-16 © National Instruments Corporation

Chapter 3 Loops and Charts
Multiplot Charts
Charts can accommodate more than one plot. You must bundle the data
together in the case of multiple scalar inputs.

You should modify the block diagram to display both the average and
the current random number on the same chart.

1. Modify the block diagram as shown in the previous illustration.

Bundle function (Functions»Cluster). In this exercise, the Bundle
function bundles, or groups, the average and current value for plotting
on the chart. The bundle node appears as shown at left when you place
it in the block diagram. If you pop up on the bundle and choose
Show»Label, the word Bundle appears in the label. You can add
additional elements by using the Resizing cursor (accessed by placing
the Positioning tool at the corner of the function) to enlarge the node.

Note: The order of the inputs to the Bundle function determines the order of the
plots on the chart. For example, if you wire the raw data to the top input
of the Bundle and the average to the bottom, the first plot corresponds to
the raw data and the second plot corresponds to the average.
© National Instruments Corporation 3-17 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts

2. Run the VI. The VI displays two plots on the chart. The plots are
overlaid. That is, they share the same vertical scale. Try running
the VI with execution highlighting turned on to see the data in the
shift registers. Remember to turn off the hilite execute button, in
the toolbar, when you finish so the VI can execute at full speed.

Customizing Charts

You can customize charts to match your data display requirements or
to display more information. Features available for charts include: a
scrollbar, a legend, a palette, and a digital display.

On the chart, the digital display has been enabled. Notice that a
separate digital display exists for each trace on the chart.

1. If the scrollbar is present, hide it by popping up on the chart and
deselecting

 Show»ScrollBar

.

2. Customize the Y axis.

a. Use the Labeling tool to double-click on 2.0 in the Y scale.
Type in

1

.

2

 and press

<Enter>

 (Windows);

<return>

(Macintosh);

<Return>

 (Sun); or

<Enter>

 (HP-UX).

b. Again using the Labeling tool, click on the second number
from the bottom on the Y axis. Change this number
to 0.2, 0.5, or something other than the current number. This
number determines the numerical spacing of the Y axis
divisions.
LabVIEW Demonstration Guide 3-18 © National Instruments Corporation

Chapter 3 Loops and Charts

Note:

The chart size has a direct effect on the display of axis scales. Increase the
chart size if you have trouble customizing the axis.

3. Show the legend by popping up on the chart, and choosing

Show»Legend

. Move the legend if necessary.

You can place the legend anywhere relative to the chart. Stretch the
legend to include two plots using the Resizing cursor. The Positioning
tool changes to the Resizing cursor to indicate that you can resize the
legend. Rename

0

 to

Current

Value

 by double-clicking on the label
with the Labeling tool and typing in the new text. You can change
plot 1 to

Running

Avg

 in the same way. If the text disappears, enlarge
the legend text box by resizing from the

left

 corner of the legend with
the Resizing cursor. You can set the plot line style and the point style
by popping up on the plot in the legend.

You can set the plot line width by popping up on the plot in the legend.
Using this pop-up menu, you can change the default line setting to one
that is larger than 1 pixel. You can also select a hairline width, which
is not displayed on the computer screen, but is printed if your printer
supports hairline printing.

If you have a color monitor, you can also color the plot background,
traces, or point style by popping up on what you want to change in the
legend with the Color tool. Choose the color you want from the color
palette that appears.

4. Show the chart pop-up palette by popping up on the chart and
choosing

 Show»Palette

.

With the palette, you can modify the chart display while the VI is
running. You can reset the chart, scale the X or Y axis, and change the
display format at any time. You can also scroll to view other areas or
zoom into areas of a graph or chart. Like the legend, you can place the
palette anywhere relative to the chart.

5. Run the VI. While the VI is running, use the buttons from the
palette to modify the chart.

You can use the X and Y buttons to rescale the X and Y axes,
respectively. If you want the graph to autoscale either of the scales
continuously, click on the lock switch to the left of each button to lock
on autoscaling.
© National Instruments Corporation 3-19 LabVIEW Demonstration Guide

Chapter 3 Loops and Charts

You can use the other buttons to modify the axis text precision or to
control the operation mode for the chart. Experiment with these buttons
to explore their operation, scroll the area displayed, or zoom in on areas
of the chart.

Note:

Modifying the axis text format often requires more physical space than
was originally set aside for the axis. If you change the axis, the text may
become larger than the maximum size that the waveform can correctly
present. To correct this, use the Resizing cursor to make the display area
of the chart smaller.

 Different Chart Modes
The following illustration shows the three chart display options
available from the

Data Operations»Update Mode

: strip chart, scope
chart, and sweep chart. The default mode is strip chart. (If the VI is still
running, the

Data Operations

 submenu is the pop-up menu for the
chart.)
LabVIEW Demonstration Guide 3-20 © National Instruments Corporation

Chapter 3 Loops and Charts

The

strip chart

mode scrolling display is similar to a paper tape strip
chart recorder. As the VI receives each new value, it plots the value at
the right margin, and shifts old values to the left.

1. Make sure the VI is still running, pop up on the chart, and select

Data Operations»Update Mode»Scope Chart

.

The

scope chart

mode has a retracing display similar to an
oscilloscope. As the VI receives each new value, it plots the value to
the right of the last value. When the plot reaches the right border of the
plotting area, the VI erases the plot and begins plotting again from the
left border. The scope chart is significantly faster than the strip chart
because it is free of the overhead processing involved in scrolling.

2. Make sure the VI is still running, pop up on the chart, and select

Data Operations»Update Mode»Sweep Chart

.

The

sweep chart

mode acts much like the scope chart, but it does not
go blank when the data hits the right border. Instead, a moving vertical
line marks the beginning of new data and moves across the display as
the VI adds new data.

3. Stop the VI, and save it. Name it

My

Random

Average

.

vi

.

© National Instruments Corporation 3-21 LabVIEW Demonstration Guide

Arrays, Clusters, and Graphs
© National Instruments Corporation 4-1 LabVIEW Demons
Chapter

4

You Will Learn:

• About arrays.

• How to generate arrays on loop boundaries.

• What polymorphism is.

• About clusters.

• How to use graphs to display data.

• How to use some basic array functions.

Arrays

An array consists of a collection of data elements that are all the same
type. An array has one or more dimensions and up to elements
per dimension, memory permitting. Arrays in LabVIEW can be any
type (except array, chart, or graph). You access each array element
through its index. The index is in the range 0 to

n

-1, where

n

 is the
number of elements in the array. The following one-dimensional array
of numeric values illustrates this structure. Notice that the first element
has index 0, the second element has index 1, and so on.

Array Controls, Constants, and Indicators

You create array controls, constants, and indicators on the front panel
or block diagram by combining an

array shell

with a numeric, Boolean,
string, or cluster. The array element cannot be another array, chart, or
graph.

Graphs

A

graph indicator

 consists of a two-dimensional display of one or more
data arrays called

plots

. LabVIEW has three types of graphs:

2
31

1–

1.2 8.08.2 6.0 1.04.8 5.1 2.5 1.7

0 1 2 3 4 5 6 7 8 9index

10-element array 3.2
tration Guide

Chapter 4 Arrays, Clusters, and Graphs

XY graphs

,

waveform graphs

, and

intensity graphs

 (see the

Additional
Topics

 section at the end of this chapter for information on
intensity graphs).

The difference between a graph and a chart (discussed in Chapter 3,

Loops and Charts,

in this demonstration guide) is that a graph plots
data as a block, whereas a chart plots data point by point or array by
array.

Creating an Array with Auto-Indexing

 OBJECTIVE To create an array using the auto-indexing feature of a For Loop and
plot the array in a waveform graph.

You will build a VI that generates an array using the Generate
Waveform VI and plots the array in a waveform graph. You will also
modify the VI to graph multiple plots.

Front Panel

1. Open a new front panel.

2. Place an array shell from

Controls»Array & Cluster

 in the front
panel. Label the array shell

Waveform

Array

.

digital indicator array

waveform graph
Autoscale Y disabled
Min Y axis -0.5
Max Y axis 1.5
LabVIEW Demonstration Guide 4-2 © National Instruments Corporation

Chapter 4 Arrays, Clusters, and Graphs

3. Place a digital indicator from

Controls»Numeric

 inside the
element display of the array shell, as the following illustration
shows. This indicator displays the array contents.

As stated previously, a

graph indicator

 is a two-dimensional display of
one or more data arrays called

plots

. LabVIEW has three types of
graphs:

XY graphs

,

waveform graphs

, and

intensity graphs

.

4. Place a waveform graph from

Controls»Graph

 in the front panel.
Label the graph

Waveform

Graph

.

The waveform graph plots arrays with uniformly spaced points, such
as acquired time-varying waveforms.

5. Enlarge the graph by dragging a corner with the Resizing cursor.

By default, graphs

autoscale

 their input. That is, they automatically
adjust the X and Y axis scale limits to display the entire input data set.

6. Disable autoscaling by popping up on the graph and deselecting

Y Scale»Autoscale Y

.

7. Modify the Y axis limits by double-clicking on the scale limits
with the Labeling tool and entering the new numbers. Change
the Y axis minimum to -0.5 and the maximum to 1.5.
© National Instruments Corporation 4-3 LabVIEW Demonstration Guide

Chapter 4 Arrays, Clusters, and Graphs

Block Diagram

1. Build the block diagram shown in the preceding illustration.

The Generate Waveform VI (

Functions»Tutorial

) returns one point of
a waveform. The VI requires a scalar index input, so wire the loop
iteration terminal to this input. Popping up on the VI and selecting

Show»Label

 displays the word

Generate

Waveform

 in the label.

Notice that the wire from the Generate Waveform VI becomes thicker
as it changes to an array at the loop border.

The For Loop automatically accumulates the arrays at its boundary.
This is called

auto-indexing

. In this case, the numeric constant wired
to the loop count numeric input has the For Loop create a 100-element
array (indexed 0 to 99).

Bundle function (

Functions»Cluster

) assembles the plot components
into a cluster. You need to resize the Bundle function icon before you
can wire it properly. Place the Positioning tool on the lower right
corner of the icon. The tool transforms into the Resizing cursor shown
at left. When the tool changes, click and drag down until a third input
terminal appears. Now, you can continue wiring your block diagram as
shown in the first illustration in this section.

A cluster consists of a data type that can contain data elements of
different types. The cluster in the block diagram you are building here
groups related data elements from multiple places on the diagram,
reducing wire clutter. When you use clusters, your subVIs require
fewer connection terminals. A cluster is analogous to a record in Pascal

1D array
LabVIEW Demonstration Guide 4-4 © National Instruments Corporation

Chapter 4 Arrays, Clusters, and Graphs

or a struct in C. You can think of a cluster as a bundle of wires, much
like a telephone cable. Each wire in the cable would represent a
different element of the cluster. The components include the initial X
value (0), the delta X value (1), and the Y array (waveform data,
provided by the numeric constants on the block diagram). In
LabVIEW, use the Bundle function to assemble a cluster.

Note:

Be sure to build data types that the graphs and charts accept.

As you build your block diagram, be sure to check your data types by
taking the following steps:

• Open the Help window by choosing

Help»Show Help

.

• Move the Wiring tool over the graph terminal.

• Check the data type information that appears in the Help window.
For an example, see the following illustration.

Numeric Constant (

Functions»Numeric

). Three numeric constants
set the number of For Loop iterations, the initial X value, and the
delta X value. Notice that you can pop up on the For Loop count
terminal, shown at left, and select

Create Constant

 to automatically
add and wire a numeric constant for that terminal.
© National Instruments Corporation 4-5 LabVIEW Demonstration Guide

Chapter 4 Arrays, Clusters, and Graphs

Each iteration of the For Loop generates one point in a waveform that
the VI stores in the waveform array created automatically at the loop
border. After the loop finishes execution, the Bundle function bundles
the initial value of X (Xo), the delta value of X, and the array for
plotting on the graph.

2. Return to the front panel and run the VI. The VI plots the
auto-indexed waveform array on the waveform graph. The
initial X value is 0 and the delta X value is 1.

3. Change the delta X value to 0.5 and the initial X value to 20. Run
the VI again.

Notice that the graph now displays the same 100 points of data with a
starting value of 20 and a delta X of 0.5 for each point (see the X axis).
In a timed test, this graph would correspond to 50 seconds worth of
data starting at 20 seconds. Experiment with several combinations for
the initial and delta X values.

4. You can view any element in the array by entering the index of that
element in the index display. If you enter a number greater than the
array size, the display dims, indicating that you have not defined a
value for that index.

If you want to view more than one element at a time, you can resize the
array indicator. Place the Positioning tool on the lower right corner of
the array. The tool transforms into the Resizing cursor shown at left.
When the tool changes, drag to the right or straight down. The array
now displays several elements in ascending index order, beginning
with the element corresponding to the specified index, as the following
illustration shows.

In the previous block diagram, you specified an initial X and a delta X
value for the waveform. Often, however, the initial X value is zero and
the delta X value is 1. In these instances, you can wire the waveform

index 6 7 8 index

6

7

8

LabVIEW Demonstration Guide 4-6 © National Instruments Corporation

Chapter 4 Arrays, Clusters, and Graphs

array directly to the waveform graph terminal, as the following
illustration shows.

5. Return to the block diagram. Delete the Bundle function and the
numeric constants wired to it. To delete the function and constants,
select the function and constants with the Positioning tool then
press

<Delete>

. Select

 Edit»Remove Bad Wires

. Finish wiring
the block diagram as shown in the previous illustration.

6. Run the VI. Notice that the VI plots the waveform with an
initial X value of 0 and a delta X value of 1.

 Multiplot Graphs
You can create multiplot waveform graphs by building an array of the
data type normally passed to a single-plot graph.

2D array
© National Instruments Corporation 4-7 LabVIEW Demonstration Guide

Chapter 4 Arrays, Clusters, and Graphs

1. Continue building your block diagram as shown in the preceding
diagram.

Sine function from (

Functions»Numeric»Trigonometric

). In this
exercise, you use the function in a For Loop to build an array of points
that represents one cycle of a sine wave.

Build Array function (

Functions»Array

). In this exercise, you use this
function to create the proper data structure to plot two arrays on a
waveform graph, which in this case is a two-dimensional array.
Enlarge the Build Array function to create two inputs by dragging a
corner with the Positioning tool.

Pi constant (

Functions»Numeric»Additional Numeric Constants

).

Remember that you can find the Multiply and Divide functions in

Functions»Numeric

.

2. Switch to the front panel. Run the VI.

Notice that the two waveforms plot on the same waveform graph. The
initial X value defaults to 0 and the delta X value defaults to 1 for both
data sets.

 Note: You can change the appearance of a plot on the graph by popping up in
the legend for a particular plot. For example, you can change from a line
graph to a bar graph by choosing

Common Plots»Bar Graph

.

3. Save and close the VI. Name it

My

Graph

Waveform
Arrays

.

vi

. Be sure to save your work in

mywork

.

llb

.

Polymorphism

Polymorphism is the ability of a function to adjust to input data of
different types, dimensions, or representations. Most LabVIEW
functions are polymorphic. The previous block diagram is an example
of polymorphism. Notice that you use the Multiply function in two
locations, inside and outside the For Loop. Inside the For Loop, the
function multiplies two scalar values; outside the For Loop, the
function multiplies an array by a scalar value.
LabVIEW Demonstration Guide 4-8 © National Instruments Corporation

Chapter 4 Arrays, Clusters, and Graphs

The following example shows some of the polymorphic combinations
of the Add function.

In the first combination, the two scalars are added together, and the
result is a scalar. In the second combination, the scalar is added to each
element of the array, and the result is an array. In the third combination,
each element of one array is added to the corresponding element of the
other array. You can also use other combinations, such as clusters of
numerics, arrays of clusters, and so on.

These principles can be applied to other LabVIEW functions and data
types. LabVIEW functions may be polymorphic to different degrees.
Some functions may accept numeric and Boolean inputs, others may
accept a combination of any data types.

Using the Graph and Analysis VIs

OBJECTIVE

 You will build a VI that measures temperature every 0.25 seconds
for 10 seconds. During the acquisition, the VI displays the
measurements in real time on a strip chart. After completing the
acquisition, the VI plots the data on a graph and calculates the average,
maximum, and minimum temperatures.
© National Instruments Corporation 4-9 LabVIEW Demonstration Guide

Chapter 4 Arrays, Clusters, and Graphs

Front Panel

1. Open a new front panel and build the front panel shown in the
preceding illustration. You can modify the point styles of the
waveform chart and waveform graph by popping up on their
legends.

The Temperature waveform chart displays the temperature as it is
acquired. After acquisition, the VI plots the data in Temp

Graph. The

Mean, Max, and Min digital indicators display the average, maximum,
and minimum temperatures.

Block Diagram
LabVIEW Demonstration Guide 4-10 © National Instruments Corporation

Chapter 4 Arrays, Clusters, and Graphs

1. Build the block diagram shown in the previous illustration, using
the following elements:

The Digital Thermometer VI (

Functions»Tutorial

, or you can use the
VI you built in Chapter 2 by choosing

Functions»Select a VI...

and
selecting

My Thermometer VI. Returns one temperature measurement.

Wait Until Next ms Multiple function (

Functions»Time & Dialog

). In
this exercise, this function ensures the For Loop executes every 0.25
seconds (250 milliseconds).

Numeric constant (

Functions»Numeric

). You can also pop up on the
Wait Until Next ms Multiple function and select

Create Constant

 to
automatically create and wire the numeric constant.

Array Max & Min function (

Functions»Array

). In this exercise, this
function returns the maximum and minimum temperature measured
during the acquisition.

The Mean VI (

Functions»Analysis»Probability and Statistics

) returns
the average of the temperature measurements.

Bundle function (

Functions»Cluster

) assembles the plot components
into a cluster. The components include the initial X value (0), the
delta X value (0.25), and the Y array (temperature data). Use the
Positioning tool to resize the function by dragging one of the corners.

The For Loop executes 40 times. The Wait Until Next ms Multiple
function causes each iteration to take place every 250 milliseconds.
The VI stores the temperature measurements in an array created at the
For Loop border (auto-indexing). After the For Loop completes
execution, the array passes to various nodes.

The Array Max & Min function returns the maximum and minimum
temperature. The Mean VI returns the average of the temperature
measurements.

Your completed VI bundles the data array with an initial X value
of 0 and a delta X value of 0.25. The VI requires a delta X value
of 0.25 so that the VI plots the temperature array points every 0.25
seconds on the waveform graph.

2. Return to the front panel and run the VI.

3. Save the VI in

mywork

.

llb

 as

My

Temperature
Analysis

.

vi

.

© National Instruments Corporation 4-11 LabVIEW Demonstration Guide

Case and Sequence Structures
and the Formula Node
© National Instruments Corporation 5-1 LabVIEW Demons
Chapter

5

You Will Learn:

• How to use the Case structure.

• How to use the Sequence structure.

• What Sequence Locals are and how to use them.

• What a Formula Node is and how to use it.

Using the Case Structure

OBJECTIVE

You will build a VI that checks a number to see if it is positive. If the
number is positive the VI calculates the square root of the number;
otherwise, the VI returns an error.

Front Panel

1. Open a new front panel and build the front panel as shown in the
previous illustration.

The Number control supplies the number. The Square

Root

Value

indicator displays the square root of the number. The free label acts as
a note to the user.
tration Guide

Chapter 5 Case and Sequence Structures and the Formula Node

Block Diagram

1. Open the block diagram.

2. Place a Case structure (

Functions»Structures

) in the block
diagram. Enlarge the Case structure by dragging one corner with
the Resizing cursor.

By default, the Case structure is Boolean and it has only two cases:
True and False. A Boolean Case structure is analogous to an
if-then-else statement in text-based, programming languages. It

Selection
Terminal
LabVIEW Demonstration Guide 5-2 © National Instruments Corporation

Chapter 5 Case and Sequence Structures and the Formula Node

automatically changes to numeric when you wire a numeric control to
the selection terminal.

You can display only one case at a time. To change cases, click on the
arrows at the top of the Case structure.

3. Select the other block diagram objects and wire them as shown in
the block diagram illustration.

Greater Or Equal To 0? function (Functions»Comparison). In this
exercise, the function determines whether the number input is negative.
The function returns a TRUE if the number input is greater than or
equal to 0.

Square Root function (Functions»Numeric). In this exercise, the
function returns the square root of the input number.

Numeric Constant (Functions»Numeric).

One Button Dialog function (Functions»Time & Dialog). In this
exercise, the function displays a dialog box that contains the message
Error...Negative Number.

String Constant (Functions»String). Enter text inside the box with the
Labeling tool.

In this exercise, the VI executes either the True case or the False case.
If the number is greater than or equal to zero, the VI executes the True
case and returns the square root of the number. The False case
outputs -99999.00 and displays a dialog box with the message
Error...Negative Number.

-99999.00
© National Instruments Corporation 5-3 LabVIEW Demonstration Guide

Chapter 5 Case and Sequence Structures and the Formula Node
Note: You must define the output tunnel for each case. When you create an
output tunnel in one case, tunnels appear at the same position in all the
other cases. Unwired tunnels appear as white squares.

Be sure to wire to the output tunnel for each unwired case, clicking on the
tunnel itself each time. In this exercise, you assign a value to the output
tunnel in the False case because the True case has an output tunnel. If you
do not want to assign the output in all cases to a value, then you must put
the indicator in that case or use a global or local variable.

4. Return to the front panel and run the VI. Try a number greater than
zero and a number less than zero by changing the value in the
digital control you labeled Number. Notice that when you change
the digital control to a negative number, LabVIEW displays the
error message you set up in the False case of the case structure.

5. Save and close the VI. Name it My Square Root.vi.

VI Logic
if (Number >= 0) then

Square Root Value = SQRT(Number)

else

Square Root Value = -99999.00

Display Message "Error...Negative Number"

end if
LabVIEW Demonstration Guide 5-4 © National Instruments Corporation

Chapter 5 Case and Sequence Structures and the Formula Node
Using the Sequence Structure
OBJECTIVE You will build a VI that computes the time it takes to generate a

random number that matches a given number.

Front Panel

1. Open a new front panel and build the front panel shown in the
following illustration. Be sure to modify the controls and
indicators as described in the text following the illustration.

The Number to Match control contains the number you want to
match. The Current Number indicator displays the current random
number. The # of iterations indicator displays the number of
iterations before a match. Time to Match indicates how many
seconds it took to find the matching number.

Modifying the Numeric Format
By default, LabVIEW displays values in numeric controls in decimal
notation with two decimal places (for example, 3.14). You can use the
Format & Precision... option of a control or indicator pop-up menu to
change the precision or to display the numeric controls and indicators
in scientific or engineering notation. You can also use the Format &
Precision... option to denote time and date formats for numerics.

1. Change the precision on the Time to Match indicator.
© National Instruments Corporation 5-5 LabVIEW Demonstration Guide

Chapter 5 Case and Sequence Structures and the Formula Node
a. Pop up on the Time to Match digital indicator and choose
Format & Precision.... You must be in the front panel to
access the menu.

b. Enter a 3 for Digits of Precision and click on OK.

2. Change the representation of the digital control and two of the
digital indicators to long integers.

a. Pop up on the Number to Match digital control and choose
Representation»Long.

b. Repeat the previous step for the Current Number, and the # of
iterations digital indicators.
LabVIEW Demonstration Guide 5-6 © National Instruments Corporation

Chapter 5 Case and Sequence Structures and the Formula Node
Setting the Data Range
With the Data Range... option you can prevent a user from setting a
control or indicator value outside a preset range or increment. Your
options are to ignore the value, coerce it to within range, or suspend
execution. The range error symbol appears in place of the run button,
in the toolbar, when a range error suspends execution. Also, a solid,
dark border frames the control that is out of range.

1. Set the data range between 0 and 100 with an increment of 1.

a. Pop up on the Time to Match indicator and choose Data
Range....

b. Fill in the dialog box, as shown in the following illustration,
and click on OK.
© National Instruments Corporation 5-7 LabVIEW Demonstration Guide

Chapter 5 Case and Sequence Structures and the Formula Node
Block Diagram

1. Open the block diagram.

2. Place the Sequence structure (Functions»Structures) in the block
diagram.
LabVIEW Demonstration Guide 5-8 © National Instruments Corporation

Chapter 5 Case and Sequence Structures and the Formula Node
The Sequence structure, which looks like frames of film, executes
block diagrams sequentially. In conventional programming languages,
the program statements execute in the order in which they appear. In
data flow programming, a node executes when data is available at all
of the node inputs, although sometimes it is necessary to execute one
node before another. LabVIEW uses the Sequence structure as a
method to control the order in which nodes execute. LabVIEW places
the diagram that the VI executes first inside the border of Frame 0, it
places the diagram it executes second inside the border of Frame 1, and
so on. As with the Case structure, only one frame is visible at a time.

3. Enlarge the structure by dragging one corner with the Resizing
cursor.

4. Create a new frame by popping up on the frame border and choose
Add Frame After. Repeat this step to create Frame 2.

Frame 0 in the previous illustration contains a small box with an arrow
in it. That box is a sequence local variable which passes data between
frames of a Sequence structure. You can create sequence locals on the
border of a frame. The data wired to a frame sequence local is then
available in subsequent frames. However, you cannot access the data
in frames preceding the frame in which you created the sequence local.

5. Create the sequence local by popping up on the bottom border of
Frame 0 and choosing Add Sequence Local.

The sequence local appears as an empty square. The arrow inside the
square appears automatically when you wire a function to the sequence
local.

6. Finish the block diagram as shown in the opening illustration of
the Block Diagram section.

Tick Count (ms) function (Functions»Time & Dialog). Returns the
number of milliseconds that have elapsed since power on. For this
exercise, you need two Tick Count functions.

Random Number (0-1) function (Functions»Numeric). Returns a
random number between 0 and 1.

Multiply function (Functions»Numeric). In this exercise, the function
multiplies the random number by 100. In other words, the function
returns a random number between 0.0 and 100.0.
© National Instruments Corporation 5-9 LabVIEW Demonstration Guide

Chapter 5 Case and Sequence Structures and the Formula Node
Numeric Constant function (Functions»Numeric). In this exercise,
the numeric constant represents the maximum number that can be
multiplied.

Round to Nearest function (Functions»Numeric). In this exercise, the
function rounds the random number between 0 and 100 to the nearest
whole number.

Not Equal? function (Functions»Comparison). In this exercise, the
function compares the random number to the number specified in the
front panel and returns a TRUE if the numbers are not equal.
Otherwise, this function returns FALSE.

Increment function (Functions»Numeric). In this exercise, the
function increments the While Loop count by 1.

Subtract function (Functions»Numeric). In this exercise, the function
returns the time (in milliseconds) elapsed between Frame 2 and
Frame 0.

Divide function (Functions»Numeric). In this exercise, the function
divides the number of milliseconds elapsed by 1000 to convert the
number to seconds.

Numeric constant (Functions»Numeric). In this exercise, the function
converts the number from milliseconds to seconds.

In Frame 0, the Tick Count (ms) function returns the current time in
milliseconds. This value is wired to the sequence local, where the value
is available in subsequent frames. In Frame 1, the VI executes the
While Loop as long as the number specified does not match the number
that the Random Number (0-1) function returns. In Frame 2, the Tick
Count (ms) function returns a new time in milliseconds. The VI
subtracts the old time (passed from Frame 0 through the Sequence
local) from the new time to compute the time elapsed.

7. Return to the front panel and enter a number inside the Number to
Match control and run the VI.

8. Save and close the VI. Name it My Time to Match.vi.
LabVIEW Demonstration Guide 5-10 © National Instruments Corporation

Chapter 5 Case and Sequence Structures and the Formula Node
Formula Node
The Formula Node is a resizable box that you can use to enter formulas
directly into a block diagram. You place the Formula Node on the
block diagram by selecting it from Function»Structures. This feature
is useful when an equation has many variables or is otherwise
complicated. For example, consider the equation:

y = x2 + x + 1.

If you implement this equation using regular LabVIEW arithmetic
functions, the block diagram looks like the one in the following
illustration.

You can implement the same equation using a Formula Node, as shown
in the following illustration.

With the Formula Node, you can directly enter a complicated formula,
or formulas, in lieu of creating block diagram subsections. You enter
formulas with the Labeling tool. You create the input and output
terminals of the Formula Node by popping up on the border of the node
and choosing Add Input (Add Output). Type the variable name in the
box. Variables are case sensitive. You enter the formula or formulas
inside the box. Each formula statement must end with a semicolon (;).
© National Instruments Corporation 5-11 LabVIEW Demonstration Guide

Chapter 5 Case and Sequence Structures and the Formula Node
The operators and functions available inside the Formula Node are
listed in the Help window for the Formula Node, as shown in the
following illustration. A semicolon terminates each formula statement.

The following example shows how you can perform a conditional
assignment inside a Formula Node.

Consider the following code fragment that computes the square root
of x if x is positive, and assigns the result to y. If x is negative, the code
assigns -99 to y.

if (x >= 0) then

y = sqrt(x)

else

y = -99

end if
LabVIEW Demonstration Guide 5-12 © National Instruments Corporation

Chapter 5 Case and Sequence Structures and the Formula Node
You can implement the code fragment using a Formula Node, as shown
in the following diagram.

Using the Formula Node
OBJECTIVE You will build a VI that uses the Formula Node to calculate the

following equations.

y1 = x3 - x2 + 5

y2 = m * x + b

where x ranges from 0 to 10.

You will use only one Formula Node for both equations, and you will
graph the results on the same graph.

Condition

Conditional Operator

True Condition

False Condition
© National Instruments Corporation 5-13 LabVIEW Demonstration Guide

Chapter 5 Case and Sequence Structures and the Formula Node
Front Panel

1. Open a new front panel and build the front panel shown in the
preceding illustration. The waveform graph indicator displays the
plots of the equation. The VI uses the two digital controls to input
the values for m and b.

Block Diagram

1. Build the block diagram shown in the preceding illustration.

2. Place the For Loop (Functions»Structures) in the block diagram
and drag the corner to enlarge the loop.
LabVIEW Demonstration Guide 5-14 © National Instruments Corporation

Chapter 5 Case and Sequence Structures and the Formula Node
Formula Node (Functions»Structures). With this node, you can
directly enter formula(s). Create the three input terminals by popping
up on the border and choosing Add Input. You create the output
terminal by choosing Add Output from the pop-up menu.

When you create an input or output terminal, you must give it a
variable name. The variable name must exactly match the one you use
in the formula. The names are case sensitive. That is, if you use a lower
case a in naming the terminal, you must use a lower case a in the
formula. You can enter the variable names and formula with the
Labeling tool.

Note: Although variable names are not limited in length, be aware that long
names take up considerable diagram space. A semicolon (;) terminates the
formula statement.

Numeric Constant (Functions»Numeric). You can also pop up on the
count terminal and select Create Constant to automatically create and
wire the numeric constant. The numeric constant specifies the number
of For Loop iterations. If x range is 0 to 10 including 10, you need to
wire 11 to the count terminal.

Because the iteration terminal counts from 0 to 10, you use it to control
the X value in the Formula Node.

Build Array (Functions»Array) puts two array inputs into the form of
a multiplot graph. Create the two input terminals by using the Resizing
cursor to drag one of the corners.

3. Return to the front panel and run the VI with different values
for m and b.

4. Save and close the VI. Name the VI My Equations.vi.
© National Instruments Corporation 5-15 LabVIEW Demonstration Guide

Strings and File I/O
© National Instruments Corporation 6-1 LabVIEW Demons
Chapter

6

You Will Learn:
• How to create string controls and indicators.

• How to use string functions.

• About file input and output operations.

• How to save data to files in spreadsheet format.

• How to write data to and read data from text files.

Strings
A string is a collection of ASCII characters. You can use strings for
more than simple text messages. In instrument control, you can pass
numeric data as character strings and then convert these strings to
numbers. Storing numeric data to disk can also involve strings. To store
numbers in an ASCII file, you must first convert numbers to strings
before writing the numbers to a disk file.

Creating String Controls and Indicators
You can find the string control and indicator, shown at left, in
Controls»String & Table. You can enter or change text inside a string
control using the Operating tool or the Labeling tool. Enlarge string
controls and indicators by dragging a corner with the Positioning tool.

Strings and File I/O
If you want to minimize space that a front panel string control or
indicator occupies, select Show»Scrollbar. If this option is dimmed,
you must increase the vertical size of the window to make it available.
tration Guide

Chapter 6 Strings and File I/O
Using String Functions
OBJECTIVE LabVIEW has many functions to manipulate strings. You will find

these functions in Functions»String. You will build a VI that converts
a number to a string and concatenates the string with other strings to
form a single output string. The VI also determines the output string
length.

Front Panel

1. Open a new front panel and build the front panel shown in the
preceding illustration. Be sure to modify the controls and
indicators as depicted.

string control

digital control

string control

string indicator

digital indicator
Representation -> 132
LabVIEW Demonstration Guide 6-2 © National Instruments Corporation

Chapter 6 Strings and File I/O
The two string controls and the digital control can be combined into a
single output string and displayed in the string indicator. The digital
indicator displays the string length.

The Combined String output in this exercise has a similar format to
command strings used to communicate with GPIB (IEEE 488) and
serial (RS-232 or RS-422) instruments. Refer to Chapter 8, Data
Acquisition and Instrument Control, of this demonstration guide to learn
more about strings used for instrument commands.

Block Diagram

1. Build the block diagram shown in the preceding illustration.

Format Into String function (Functions»String) concatenates and
formats numbers and strings into a single output string. Use the
Resizing cursor on the icon to add three argument inputs.

String Length function (Functions»String) returns the number of
characters in the concatenated string.
© National Instruments Corporation 6-3 LabVIEW Demonstration Guide

Chapter 6 Strings and File I/O
2. Run the VI. Notice that the Format Into String function
concatenates the two string controls and the digital control into a
single, output string.

3. Save the VI as My Build String.vi. You will use this VI in the
next exercise.

File I/O
The LabVIEW file I/O functions (Functions»File I/O) are a powerful
and flexible set of tools for working with files. In addition to reading
and writing data, the LabVIEW file I/O functions move and rename
files and directories, create spreadsheet-type files of readable ASCII
text, and write data in binary form for speed and compactness.

You can store or retrieve data from files in three different formats.

• ASCII Byte Stream. You should store data in ASCII format when you
want to access it from another software package, such as a word
processing or spreadsheet program. To store data in this manner, you
must convert all data to ASCII strings.

• Datalog files. These files are in binary format that only LabVIEW
can access. Datalog files are similar to database files because you can
store several different data types into one (log) record of a file.

• Binary Byte Stream. These files are the most compact and fastest
method of storing data. You must convert the data to binary string
format and you must know exactly what data types you are using to
save and retrieve the data to and from files.

This section discusses ASCII byte stream files because that is the most
common data file format.

File I/O Functions
Most file I/O operations involve three basic steps: opening an existing
file or creating a new file; writing to or reading from the file; and
closing the file. Therefore, LabVIEW contains many utility VIs in
Functions»File I/O. This section describes the nine, high-level
utilities. These utility functions are built upon intermediate-level VIs
that incorporate error checking and handling with the file I/O
functions.
LabVIEW Demonstration Guide 6-4 © National Instruments Corporation

Chapter 6 Strings and File I/O
You can also set a delimiter or string of delimiters, such as tabs,
commas, and so on, in your spreadsheet. This saves you from parsing
your spreadsheet if you used a delimiter other than the default tab to set
up the spreadsheet.

The Write Characters To File VI writes a character string to a new byte
stream file or appends the string to an existing file. This VI opens or
creates the file, writes the data, and then closes the file.

The Read Characters From File VI reads a specified number of
characters from a byte stream file beginning at a specified character
offset. This VI opens the file beforehand and closes it afterwards.

The Read Lines From File VI reads a specified number of lines from a
byte stream file beginning at a specified character offset. This VI opens
the file beforehand and closes it afterwards.

The Write To Spreadsheet File VI converts a 1D or 2D array of
single-precision numbers to a text string and writes the string to a new
byte stream file or appends the string to an existing file. You can
optionally transpose the data. This VI opens or creates the file
beforehand and closes it afterwards. You can use this VI to create text
files readable by most spreadsheet programs.

The Read From Spreadsheet File VI reads a specified number of lines
or rows from a numeric text file, beginning at a specified character
offset, and converts the data to a 2D, single-precision array of numbers.
You can optionally transpose the array. This VI opens the file
beforehand and closes it afterwards. You can use this VI to read
spreadsheet files saved in text format.
© National Instruments Corporation 6-5 LabVIEW Demonstration Guide

Chapter 6 Strings and File I/O
Writing to a Spreadsheet File
One very common application for saving data to a file is to format the
text file so that you can open it in a spreadsheet. In most spreadsheets,
tabs separate columns and EOL (End of Line) characters separate rows,
as shown in the following figure.

Opening the file using a spreadsheet program yields the following
table.

OBJECTIVE You will modify an existing VI to use a file I/O function so that you
can save data to a new file in ASCII format. Later you can access this
file from a spreadsheet application.

Tab
Line Separator
LabVIEW Demonstration Guide 6-6 © National Instruments Corporation

Chapter 6 Strings and File I/O
Front Panel

1. Open the My Graph Waveform Arrays.vi you built in
Chapter 4 of this demonstration guide. As you recall, this VI
generates two data arrays and plots them on a graph. You modify
this VI to write the two arrays to a file where each column contains
a data array.

Block Diagram
© National Instruments Corporation 6-7 LabVIEW Demonstration Guide

Chapter 6 Strings and File I/O
2. Open the block diagram of My Graph Waveform Arrays and
modify the VI by adding the block diagram functions that have
been placed inside the oval, as shown in the preceding illustration.

The Write To Spreadsheet File VI (Functions»File I/O) converts the
two-dimensional array to a spreadsheet string and writes it to a file. If
you have not specified a path name, then a file dialog box pops up and
prompts you for a file name. The Write To Spreadsheet File writes
either a 1-dimensional or 2-dimensional array to file. Because you
have a 2D array of data in this example, you do not have to wire to
the 1D input. With this VI, you can use a spreadsheet delimiter or string
of delimiters, such as tabs or commas in your data.

Boolean Constant (Functions»Boolean) controls whether or not
LabVIEW transposes the 2D array before writing it to file. To change
the value to TRUE click on the constant with the Operating tool. In this
case, you want the data transposed because the data arrays are row
specific (each row of the two-dimensional array is a data array).
Because each column of the spreadsheet file contains a data array,
the 2D array must first be transposed.

3. Return to the front panel and run the VI. After the data arrays have
been generated, a file dialog box prompts you for the file name of
the new file you are creating. Type in a file name and click on OK.

Caution: Do not attempt to write data in VI libraries, such as the mywork.llb.
Doing so may result in overwriting your library and losing your previous
work.

4. Save the VI, name it My Waveform Arrays to File.vi, and
close the VI.

5. You now can use spreadsheet software or a text editor to open
and view the file you just created. You should see two columns
of 100 elements.

In this example, the data was not converted or written to file until the
entire data arrays had been collected. If you are acquiring large buffers
of data or would like to write the data values to disk as they are being
generated, then you must use a different File I/O VI.
LabVIEW Demonstration Guide 6-8 © National Instruments Corporation

Chapter 6 Strings and File I/O
Appending Data to a File
OBJECTIVE You will create a VI to append temperature data to a file in ASCII

format. This VI uses a For Loop to generate temperature values and
store them in a file. During each iteration, you will convert the data to
a string, add a comma as a delimiting character, and append the string
to a file.

Front Panel

1. Open a new front panel and place the objects as shown in the
preceding illustration.

The front panel contains a digital control and a waveform chart. Select
Show»Digital Display. The # of points control specifies how
many temperature values to acquire and write to file. The chart
displays the temperature curve. Rescale the y axis of the chart for
the range 70.0 to 90.0, and rescale the x axis for the range 0 to 20.

2. Pop up on the # of points digital control and choose
Representation»Long.
© National Instruments Corporation 6-9 LabVIEW Demonstration Guide

Chapter 6 Strings and File I/O
Block Diagram

1. Open the block diagram.

2. Add the For Loop and enlarge it. This VI generates the number of
temperature values specified by the # of Points control.

3. Add a Shift Register to the loop by popping up on the loop border.
This shift register contains the path name to the file.

4. Finish wiring the objects.

Empty Path constant (Functions»File I\O»File Constants). The Empty
Path function initializes the shift register so that the first time you try
to write a value to file, the path is empty. A file dialog box prompts you
to enter a file name.

The My Thermometer VI you built in Chapter 2 (Functions»Select
a VI...) or the Digital Thermometer VI (Functions»Tutorial) returns a
simulated temperature measurement from a temperature sensor.

Format Into String function (Functions»String) converts the
temperature measurement (a number) to a string and concatenates the
comma that follows it.
LabVIEW Demonstration Guide 6-10 © National Instruments Corporation

Chapter 6 Strings and File I/O
String constant (Functions»String). This format string specifies that
you want to convert a number to a fractional format string and follow
the string with a comma.

The Write Characters To File VI (Functions»File I/O) writes a string
of characters to a file.

Boolean Constant (Functions»Boolean) sets the append to file?
input of the Write Characters To File VI to True so that the new
temperature values are appended to the selected file as the loop iterates.
Click the Operating tool on the constant to set its value to True.

5. Return to the front panel and run the VI with the # of points set
to 20. A file dialog box prompts you for a file name. When you
enter a file name, the VI starts writing the temperature values to
that file as each point is generated.

6. Save the VI, name it My Write Temperature to File.vi, and
close the VI.

7. Use any word processing software such as Write for Windows,
Teach Text for Macintosh, and Text Editor in Open Windows for
UNIX to open that data file and observe the contents. You should
get a file containing twenty data values (with a precision of three
places after the decimal point) separated by commas.

Reading Data from a File
OBJECTIVE You will create a VI that reads the data file you wrote in the previous

example and displays the data on a waveform graph. You must read the
data in the same data format in which you saved it. Therefore, since you
originally saved the data in ASCII format using string data types, you
must read it in as string data with one of the file I/O VIs.
© National Instruments Corporation 6-11 LabVIEW Demonstration Guide

Chapter 6 Strings and File I/O
Front Panel

1. Open a new front panel and build the front panel shown in the
preceding illustration.

The front panel contains a string indicator and a waveform graph. The
String Read from File indicator displays the comma delimited
temperature data from the file you wrote in the last example. The graph
displays the temperature curve.

Block Diagram

1. Build the block diagram as shown in the preceding illustration.
LabVIEW Demonstration Guide 6-12 © National Instruments Corporation

Chapter 6 Strings and File I/O
The Read Characters From File VI (Functions»File I/O) reads the data
from the file and outputs the information in a string. If no path name is
specified, a file dialog box prompts you to enter a file name. In this
example, you do not need to determine the number of characters to read
because there are fewer characters in the file than the default (512).

You must know how the data was stored in a file in order to read the
data back out. If you know how long a file is, you can use the Read
Characters From File VI to determine the known number of characters
to read.

The Extract Numbers VI (Functions»Tutorial) takes an ASCII string
containing numbers separated by commas, line feeds, or other
non-numeric characters and converts them to an array of numerics.

2. Return to the front panel and run the VI. Select the data file you
just wrote to disk when the file dialog box prompts you. You
should see the same data values displayed in the graph as you saw
in the My Write Temperature to File VI example.

3. Save the VI, name it My Temperature from File.vi, and close
the VI.
© National Instruments Corporation 6-13 LabVIEW Demonstration Guide

Data Acquisition and
Instrument Control
© National Instruments Corporation 7-1 LabVIEW Demons

Chapter

7

You Will Learn:
• About acquiring data with a plug-in data acquisition board

(Windows, Macintosh, and Sun).

• About VISA functions.

• About GPIB functions.

• About serial port communication.

• About using a serial port to communicate with other serial ports.

• About using VXI for data acquisition (Windows, Macintosh,
and Sun).

• What an instrument driver is.

• How to use a frequency response test VI.

Using LabVIEW to Acquire Data
One of the most valuable features of LabVIEW is its ability to acquire
data from almost any source. LabVIEW contains VIs for controlling
the following:

• Plug-in data acquisition boards (Windows, Macintosh, and Sun)

• GPIB (IEEE 488) instruments

• Serial port instruments

• VXI instruments (Windows, Macintosh, and Sun)

These VIs use the National Instruments industry-standard driver-level
software to deliver complete control of your data acquisition and
instrument control hardware.

This demonstration guide concentrates on basic LabVIEW features and
functions.
tration Guide

Chapter 7 Data Acquisition and Instrument Control
About Plug-in Data Acquisition Boards (Windows,
Macintosh, and Sun)

National Instruments manufactures all the components you need to
build complete data acquisition systems. Plug-in boards are available
for the IBM PC/AT, EISA, IBM PS/2MicroChannel, Macintosh NuBus
Series, Macintosh LC/LCII, and SPARCstation SBus computers.

These boards have various combinations of analog, digital, and timing
inputs and outputs. You can use front-end SCXI signal conditioning
multiplexers to cost-effectively increase the number of analog input
channels. A wide variety of signal conditioning modules for
thermocouples, resistance temperature detectors (RTDs), voltage and
current inputs, and high current digital inputs and outputs complete the
acquisition hardware line.

The LabVIEW data acquisition (DAQ) VIs control all of the National
Instruments data acquisition hardware.

About VISA
VISA is a single interface library for controlling GPIB, VXI, and other
types of instruments. Using the VISA functions, you can construct a
single instrument driver VI, which controls a particular instrument
model across several different I/O media. A string is passed to the
VISA Open function in order to select which type of I/O to use to
communicate with the instrument. Once the session with the
instrument is open, the VISA functions, such as VISA Read and VISA
Write, perform the instrument I/O activities in a generic manner. Thus,
the program is not tied to any specific GPIB or VXI functions. The
VISA instrument driver is considered to be interface independent and
you can use in several different systems.

Instrument drivers that use the VISA functions, capture the activities
specific to the instrument, not the communication medium. This can
open more opportunities for reusing the instrument driver with a
number of programs.
LabVIEW Demonstration Guide 7-2 © National Instruments Corporation

Chapter 7 Data Acquisition and Instrument Control
About GPIB
The General Purpose Interface Bus (GPIB), also called IEEE 488, is a
method of communicating with stand-alone instruments, such as
multimeters and oscilloscopes. National Instruments manufactures
many products for controlling instruments with the GPIB. The most
direct method is to install a plug-in GPIB board in your computer and
connect your instrument directly to this board with a GPIB cable.

The LabVIEW GPIB functions control National Instruments GPIB
interfaces. LabVIEW uses the National Instruments standard NI-488.2
driver software that comes with your GPIB interface.

The GPIB library (Functions»Instrument I/O) contains both
traditional GPIB functions and 488.2 functions. The GPIB 488.2
functions add IEEE 488.2 compatibility to LabVIEW. These functions
implement calls that IEEE 488.2 specifies and resemble the routines in
National Instruments NI-488.2 software.

Note: If possible, you should use the VISA function rather than GPIB because
of VISAs versatility.

About Serial Ports
Serial communication is a popular means of transmitting data between
a computer and a peripheral device such as a printer, a plotter, or a
programmable instrument. Serial communication uses a transmitter to
send data, one bit at a time, over a single communication line to a
receiver. This method of communication is common when transferring
data at low rates or over long distances. For instance, serial data can be
transferred via modems, over standard telephone lines.

COM PUTER

GPIB Interface

GPIB Cable

GPIB Instrum ents
© National Instruments Corporation 7-3 LabVIEW Demonstration Guide

Chapter 7 Data Acquisition and Instrument Control
Serial communication is popular because most computers have one or
two serial ports. A limitation of serial communication, however, is that
a serial port can communicate with only one device. To accommodate
several devices, you must use a board with multiple serial ports or a
serial port multiplexer box.

Before you begin using LabVIEW for serial communication, you
should first make certain that the instrument is connected correctly to
the computer. For Windows, you must also make certain that there are
no interrupt conflicts. One way for Windows and Macintosh users to
do this is to use a general terminal software program such as Microsoft
Windows Terminal or ZTerm. Once you have established
communication with an instrument, you are now ready to use the
LabVIEW serial port VIs located in Functions»Instrument I/O»Serial.

LabVIEW contains five VIs for serial communication–Serial Port Init,
Serial Port Write, Serial Port Read, Bytes at Serial Port, and Serial Port
Break.

About VXI for Windows, Macintosh, and Sun
The VXIbus is a fast-growing platform for instrumentation systems.
VXI uses a mainframe chassis with a maximum of thirteen slots to hold
modular instruments on plug-in boards. A variety of instrument and
mainframe sizes are available from numerous vendors, and you can use
multiple instrument sizes in the same mainframe. You can control a
VXI mainframe in several different ways.

LabVIEW has VXI VIs for high- and low-level control of a VXI
system. You access these VIs from Functions»Instrument I/O»VISA.

About Instrument Drivers
An instrument driver is software that controls a particular instrument.
LabVIEW is ideally suited for creating instrument drivers. A
LabVIEW front panel can simulate the operation of a front panel of an
instrument. The block diagram can send the necessary commands to
the instrument to perform the operation the front panel specifies. When
you finish building an instrument driver, you no longer need to
remember the commands necessary to control the instrument. Rather,
you need only specify the input on the front panel. There is little value
in having a software panel to control the instrument. The real value is
LabVIEW Demonstration Guide 7-4 © National Instruments Corporation

Chapter 7 Data Acquisition and Instrument Control
that you can use the instrument driver as a subVI in conjunction with
other subVIs in a larger VI to control an entire system.

LabVIEW has a library of over 550 instrument drivers for GPIB, serial,
CAMAC, and VXI (for Windows, Macintosh, and Sun) instruments.
Because there are many different types of instruments, it is impossible
to demonstrate the techniques for creating drivers for all types of
instruments; however, for a message-based instrument all drivers build
a command string and send it to the instrument to perform the operation
that the simulated front panel specifies. The command string consists
of device-specific commands (usually in ASCII) that remotely control
the instrument. Therefore, instrument drivers contain more string
manipulation functions than specific interfacing commands.
© National Instruments Corporation 7-5 LabVIEW Demonstration Guide

	LabVIEW® Demonstration Guide
	Important Information
	Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of Nati...

	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Customer Education
	Preface—Getting Started with the LabVIEW Demonstration

	Chapter1—Introduction to LabVIEW
	Chapter Information
	What Is LabVIEW?
	How Does LabVIEW Work?
	Tools Palette
	Controls Palette
	Controls and Indicators
	Numeric Controls and Indicators
	Boolean Controls and Indicators
	Configuring Controls and Indicators
	Functions Palette
	Building a VI
	Front Panel
	Block Diagram
	Wiring Techniques
	Tip Strips
	Showing Terminals
	Wire Stretching
	Selecting and Deleting Wires
	Bad Wires
	Create & Wire Controls, Constants, and Indicators
	Run the VI
	Documenting the VI
	Saving and Loading VIs

	Chapter 2—Creating a SubVI
	Understanding Hierarchy
	Creating the SubVI
	Icon
	Icon Editor Tools and Buttons
	Connector
	Using a VI as a SubVI

	Chapter 3—Loops and Charts
	Using While Loops and Charts
	Front Panel
	Block Diagram
	Adding Timing
	For Loop
	Numeric Conversion
	Using a For Loop
	Front Panel
	Block Diagram
	Multiplot Charts
	Customizing Charts
	Different Chart Modes
	Shift Registers
	Using Shift Registers
	Front Panel
	Block Diagram
	Some Debugging Techniques
	Opening, Operating, and Changing SubVIs
	Hierarchy Window
	Search Hierarchy
	Online Help for SubVI Nodes
	Simple/Complex Help View
	Links to Online Help Files

	Chapter 4—Arrays, Clusters, and Graphs
	Arrays
	Array Controls, Constants, and Indicators
	Graphs
	Creating an Array with Auto-Indexing
	Front Panel
	Block Diagram
	Multiplot Graphs
	Polymorphism
	Using the Graph and Analysis VIs

	Chapter 5—Case and Sequence Structures and the Formula Node
	Using the Case Structure
	Front Panel
	Block Diagram
	VI Logic
	Using the Sequence Structure
	Front Panel
	Modifying the Numeric Format
	Setting the Data Range
	Block Diagram
	Formula Node
	Using the Formula Node
	Front Panel
	Block Diagram
	Front Panel
	Block Diagram

	Chapter 6—Strings and File I/O
	Strings
	Creating String Controls and Indicators
	Strings and File I/O
	Using String Functions
	Front Panel
	Block Diagram
	File I/O
	File I/O Functions
	Writing to a Spreadsheet File
	Front Panel
	Block Diagram
	Appending Data to a File
	Front Panel
	Block Diagram
	Reading Data from a File

	Chapter 7—Data Acquisition and Instrument Control
	Using LabVIEW to Acquire Data
	About Plug-in Data Acquisition Boards (Windows, Ma...
	About VISA
	About GPIB
	About Serial Ports
	About VXI for Windows, Macintosh, and Sun
	About Instrument Drivers
	Front Panel
	Block Diagram

